Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{xy}\le\frac{\left|x\right|+\left|y\right|}{2}\)
\(\Leftrightarrow\)\(\left|x\right|+\left|y\right|\ge2\sqrt{xy}\)
\(\Leftrightarrow\)\(x+y\ge2\sqrt{xy}\) ( vì \(x,y>0\) )
\(\Leftrightarrow\)\(x-2\sqrt{xy}+y=0\)
\(\Leftrightarrow\)\(\left(\sqrt{x}-\sqrt{y}\right)^2\ge0\) ( luôn đúng với mọi x, y )
Vậy \(\sqrt{xy}\le\frac{\left|x\right|+\left|y\right|}{2}\)
Chúc bạn học tốt ~
\(\left|x\right|\ge0\); \(\left|y\right|\ge0\) Áp dụng bất đặng thức Cauchy cho hai số không âm:
\(\left|x\right|+\left|y\right|\ge2\sqrt{\left|x\right|\left|y\right|}=2\sqrt{xy}\)Vì xy>0
Suy ra điều cần chứng minh
\(\Leftrightarrow x-1+x-2+x-3=2007\)
\(\Leftrightarrow3x-6=2007\)
\(\Leftrightarrow3x=2013\)
\(\Leftrightarrow x=671\)
3x - 1/4 = 0 hay x + 1/2 = 0
3x= 1/4 hay x = -1/2
x = 1/12 hay x = -1/2
Ko chép lại đề bài
=> 3x - 1/4 = 0 hoặc x +1/2 = 0
Nếu 3x-1/4 = 0 thì 3x = 0+1/4 => 3x/ 1/4 => x= 1/4 :3 => x= 1/12
Nếu x+1/2 = 0 thì x = 0-1/2 => x= -1/2
Vậy...
Ko chắc nha