Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
a. Vì $x,y$ thuộc $Z$ nên $x-3, y+5\in\mathbb{Z}$. Tích của chúng $=11$ nên ta có bảng sau:
x-3 | 1 | 11 | -1 | -11 |
y+5 | 11 | 1 | -11 | -1 |
x | 4 | 14 | 2 | -8 |
y | 6 | -4 | -16 | -6 |
b. Vì $x,y\in\mathbb{Z}$ nên $2x+1, 6-y\in\mathbb{Z}$.
Với $x$ nguyên thì $2x+1$ là số nguyên lẻ nên ta có bảng sau:
2x+1 | 1 | -1 | 3 | -3 |
6-y | 12 | -12 | 4 | -4 |
x | 0 | -1 | 1 | -2 |
y | -6 | 18 | 2 | 10 |
Bài 3
\(\dfrac{55}{23}+\dfrac{-22}{23}\le x\le\dfrac{1}{5}-\dfrac{-1}{6}+\dfrac{79}{30}\)
\(=\dfrac{33}{23}\)\(\le x\le\dfrac{90}{30}\)
\(=\dfrac{33}{23}\le x\le3\)
Mà \(x\in Z\) \(\Rightarrow\)\(x=2\)
Có 1 giá trị thỏa mãn
Chọn A
Bài 4
\(\dfrac{-11}{12}< \dfrac{5}{x}< \dfrac{-11}{15}\)
Chọn D
Bài 5
\(M=\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{99\cdot100}\)
\(M=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{99}+\dfrac{1}{99}-\dfrac{1}{100}\)
\(M=1-\dfrac{1}{100}\)
\(M=\dfrac{100}{100}-\dfrac{1}{100}\)
\(M=\dfrac{99}{100}\)
CHọn C
a: =>5-x=-23
=>x=5+23=28
b: =>x-3-x+7-25+x=54
=>x-21=54
=>x=75
c: =>7-9x-2x+4=-5x-35+27-25=-5x-37
=>-11x+3=-5x-37
=>-6x=-40
=>x=20/3
a.
10-x-5 = (-5) - 7 -11
=>5-x = 0
=>x=5
b
(x-3) - (x+17-24) - (25-x) = 24 - (-30)
=>x - 3 - x - 17 + 24 - 25 - x = 24 + 30
=>-x - 21 = 54
=>-x = 75
=>x = -75
c
(7 - 9x) - (2x - 4) = - (5x + 35) - (-27) - 25
=>7-9x - 2x + 4 = -5x - 35 + 27 - 35
=>11 - 11x + 5x = -43
=>16x = 11 + 43
=>16x = 54
=>x=4
\(1)|5-2x|=|x+4|\)
\(\Leftrightarrow\orbr{\begin{cases}5-2x=x+4\\5-2x=-x-4\end{cases}\Leftrightarrow\orbr{\begin{cases}-2x-x=4-5\\-2x+x=-4-5\end{cases}\Leftrightarrow}\orbr{\begin{cases}-3x=-1\\-x=-9\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{1}{3}\\x=9\end{cases}}}\)
Vậy \(x=\frac{1}{3};x=9\)
\(2)|x-1|=|2x+5|\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=2x+5\\x-1=-2x-5\end{cases}\Leftrightarrow\orbr{\begin{cases}x-2x=5+1\\x+2x=-5+1\end{cases}\Leftrightarrow}\orbr{\begin{cases}-x=4\\3x=-4\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=-4\\x=-\frac{4}{3}\end{cases}}}\)
Vậy \(x=-4;x=-\frac{4}{3}\)
\(3)|x+1|+|x+2|+|x+3|=0\left(1\right)\)
Ta có: \(|x+1|\ge0\forall x;|x+2|\ge0\forall x;|x+3|\ge0\forall x\)
\(\Leftrightarrow|x+1|+|x+2|+|x+3|\ge0\forall x\)
\(\left(1\right)\Leftrightarrow|x+1|+|x+2|+|x+3|=0\)
\(\Leftrightarrow\left(x+1\right)+\left(x+2\right)+\left(x+3\right)=0\)
\(\Leftrightarrow x+1+x+2+x+3=0\)
\(\Leftrightarrow\left(x+x+x\right)+\left(1+2+3\right)=0\)
\(\Leftrightarrow3x+6=0\)
\(\Leftrightarrow3x=-6\)
\(\Leftrightarrow x=-6:3\)
\(\Leftrightarrow x=-2\)
Vậy x=-2
a) Ta có: 2x+33=-11
nên 2x=-44
hay x=-22
b) Ta có: \(\dfrac{x}{2}=\dfrac{-49}{14}\)
nên x=-7
c) Ta có: \(\dfrac{5}{6}x+\dfrac{10}{3}=\dfrac{7}{2}\)
nên \(\dfrac{5}{6}x=\dfrac{7}{2}-\dfrac{10}{3}=\dfrac{1}{6}\)
hay \(x=\dfrac{1}{6}:\dfrac{5}{6}=\dfrac{1}{5}\)
a) I 2x-5 I = 13
=> 2x-5 =13 => x=9
hoặc 2x-5= -13 => x=\(\dfrac{-8}{2}\)
a) | 2x-5 | = 13
=>2x-5 = 13 hoặc 2x-5 = -13
+)2x-5 = 13
=>2x = 13+5 =18
+)2x-5 =-13
=>2x=-13+5 = -8
=>x=-4
Vậy x thuộc {9;-4}
Vậy x=9
b)|7x+3|=66
=>7x+3 = 66 hoặc 7x+3 = -66
+)7x+3=66
=>7x=66-3=63
=>x=9
+)7x+3=-66
=>7x=-66-3=-69
=>x=-69/7 (loại vì x thuộc Z )
Vậy x=9
c) Có | 5x-2|\(\le\)0
mà |5x-2|\(\ge\)0
=>|5x-2|=0
=>5x-2=0
=>5x=2
=>x=2/5 ( loại vì x thuộc Z)
Vậy x=\(\varnothing\)
a) 2.x - 4 = 11
=> 2x = 11 + 4
=> 2x = 15
=> x = 15/2 (loại vì x thuộc Z)
b) 3|2x - 5| + 3 = 24
=> 3|2x - 5| = 24 - 3
=> 3|2x - 5| = 21
=> |2x - 5| = 21 : 3
=> |2x - 5| = 7
=> 2x - 5 = 7 => 2x = 12 => x = 6
hoặc 2x - 5 = -7 => 2x = -2 => x = -1
c) |2x - 3| ≤ 5
=> -5 \(\le\)2x - 3 \(\le\)5
=> -5 + 3 \(\le\)2x \(\le\)5 + 3
=> -2 \(\le\)2x \(\le\)8
=> -1 <= x <= 4, mà x thuộc Z
=> x \(\in\){-1;0;1;2;3;4}