Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(\frac{a}{b}+\frac{a}{c}=\frac{ac+ab}{bc}=\frac{a\left(b+c\right)}{bc}=\frac{a.a}{bc}\) (thay b+c = a) (1)
\(\frac{a}{b}\times\frac{a}{c}=\frac{a.a}{bc}\) (2)
Từ (1) và (2) suy ra: \(\frac{a}{b}+\frac{a}{c}=\frac{a}{b}\times\frac{a}{c}\) (đpcm)
b) \(c=a+b\)\(\Rightarrow\)\(a=c-b\)
Ta có: \(\frac{a}{b}-\frac{a}{c}=\frac{ac-ab}{bc}=\frac{a\left(c-b\right)}{bc}=\frac{a^2}{bc}\) (thay c-b = a) (3)
\(\frac{a}{b}\times\frac{a}{c}=\frac{a^2}{bc}\) (4)
Từ (3) và (4) suy ra: \(\frac{a}{b}-\frac{a}{c}=\frac{a}{b}\times\frac{a}{c}\) (đpcm)
a) Để A là số nguyên
=> \(3⋮\left(x-1\right)\Rightarrow x-1\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\)
\(\Rightarrow x\in\left\{-2;0;2;4\right\}\)
b) \(B=\frac{x-2}{x+3}=\frac{\left(x+3\right)-5}{x+3}=1-\frac{5}{x+3}\)
Để B là số nguyên
=> \(5⋮\left(x+3\right)\Rightarrow x+3\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\)
\(\Rightarrow x\in\left\{-8;-4;-2;2\right\}\)
c) \(C=\frac{2x+1}{x-3}=\frac{\left(2x-6\right)+7}{x-3}=\frac{2\left(x-3\right)+7}{x-3}=2+\frac{7}{x-3}\)
Để C là số nguyên
=> \(7⋮\left(x-3\right)\Rightarrow x-3\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\)
\(\Rightarrow x\in\left\{-4;2;4;10\right\}\)
Học tốt!!!!
Có : P > a/a+b+c + b/a+b+c + c/a+b+c = a+b+c/a+b+c = 1
Lại có : 0 < a/a+b ; b/b+c ; c/c+a < 1
=> P < a+c/a+b+c + b+a/a+b+c + c+b/a+b+c = 2a+2b+2c/a+b+c = 2
=> 1 < P < 2
=> P ko phải là số tự nhiên
Tk mk nha
Ta có: \(\hept{\begin{cases}\frac{a}{a+b}>\frac{a}{a+b+c}\\\frac{b}{b+c}>\frac{b}{a+b+c}\\\frac{c}{c+a}>\frac{c}{a+b+c}\end{cases}}\) Cộng theo vế suy ra : \(P>1\)
Vì \(a;b;c>0\Leftrightarrow\frac{a}{a+b};\frac{b}{b+c};\frac{c}{c+a}< 1\)
Áp dụng bất đẳng thức : \(\frac{q}{p}< \frac{q+m}{p+m}\left(q< p\right)\) ta có:
\(P< \frac{a+c}{a+b+c}+\frac{a+b}{a+b+c}+\frac{b+c}{a+b+c}=2\)
còn cái nịttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttttt
\(\frac{a}{a+b}>\frac{a}{a+b+c}\)
\(\frac{b}{b+c}>\frac{b}{a+b+c}\)
\(\frac{c}{c+a}>\frac{c}{a+b+c}\)
\(\Rightarrow x>\frac{a+b+c}{a+b+c}=1\)
\(\Rightarrow x>1\)
\(\frac{a}{b+c}< \frac{a+c}{a+b+c}\)
\(\frac{b}{b+c}< \frac{b+a}{b+c+a}\)
\(\frac{c}{c+a}< \frac{c+b}{c+a+b}\)
\(\Rightarrow x< \frac{a\left(a+b+c\right)}{a+b+c}\)
\(\Rightarrow x< 2\)
\(\Rightarrow1< x< 2\) \(\Rightarrow\)ko tồn tại giá trị x nào