Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
| x - 1 | \(\ge\)0 ; | x - 2 | \(\ge\)0 ; | x - 3 | \(\ge\)0 ; ... ; | x - 100 | \(\ge\)0
\(\Rightarrow\)| x - 1 | + | x - 2 | + ... + | x - 100 | \(\ge\)0
\(\Leftrightarrow\)| x - 1 | = x - 1 ; | x - 2 | = x - 2 ; ... ; | x - 100 | = x - 100
\(\Leftrightarrow\)( x - 1 ) + ( x - 2 ) + ... + ( x - 100 ) = 2500
( x + x + ... + x ) - ( 1 + 2 + ... + 100 ) = 2500
100x - 5050 = 2500
100x = 7550
\(\Rightarrow\)x = 75,5
Ta có:
\(|x+1|=x+1\)
\(|x+2|=x+2\)
\(|x+3|=x+3\)
....................
\(|x+100|=x+100\)
\(\Rightarrow|x+1|+|x+2|+|x+3|+.....+|x+100|=x+1+x+2+x+3+....+x+100=2500\)
\(\Leftrightarrow\left(x+x+x+....+x\right)+\left(1+2+3+...+100\right)=2500\)
\(\Leftrightarrow100x+5050=2500\)
\(\Leftrightarrow100x=-2550\)
\(\Leftrightarrow x=-25,5\)
b) Làm tương tự câu a)
............................. Đấng Ed bảo ko chắc cho lắm nên sai thì sr nhé -,-
\(a)\)\(\left|x-1\right|+\left|x-2\right|+...+\left|x-8\right|=22\)
+) Với \(x\ge8\) ta có :
\(x-1+x-2+...+x-8=22\)
\(\Leftrightarrow\)\(8x-36=22\)
\(\Leftrightarrow\)\(x=\frac{29}{4}\)( không thỏa mãn )
+) Với \(x< 1\) ta có :
\(1-x+2-x+...+8-x=22\)
\(\Leftrightarrow\)\(36-8x=22\)
\(\Leftrightarrow\)\(x=\frac{7}{4}\) ( không thỏa mãn )
Vậy không có x thỏa mãn đề bài
\(b)\)\(\left|x-1\right|+\left|x-2\right|+\left|x-3\right|+...+\left|x-100\right|=2500\)
+) Với \(x\ge100\) ta có :
\(x-1+x-2+x-3+...+x-100=2500\)
\(\Leftrightarrow\)\(100x-5050=2500\)
\(\Leftrightarrow\)\(x=\frac{151}{2}\) ( không thỏa mãn )
+) Với \(x< 1\) ta có :
\(1-x+2-x+3-x+...+100-x=2500\)
\(\Leftrightarrow\)\(5050-100x=2500\)
\(\Leftrightarrow\)\(x=\frac{51}{2}\) ( không thỏa mãn )
Vậy không có x thỏa mãn đề bài
Bài 2 :
+) Với \(x\ge-1\) ta có :
\(x+1+x+2+...+x+100=605x\)
\(\Leftrightarrow\)\(100x+5050=605x\)
\(\Leftrightarrow\)\(x=10\) ( thỏa mãn )
+) Với \(x< -100\) ta có :
\(-x-1-x-2-...-x-100=605x\)
\(\Leftrightarrow\)\(-100x-5050=605x\)
\(\Leftrightarrow\)\(x=\frac{-1010}{141}\) ( không thỏa mãn )
Vậy \(x=10\)
~ Đấng phắn ~
|x-1|+|x-2|+...|x-100|=2500
+ xét trường hợp x\geq 0
\Rightarrow |x-1|+|x-2|+...|x-100|=2500
hay x-1+x-2+.................+x-100=2500
\Rightarrow 100x-5050=2500
\Rightarrow x=755
+ xét trường hợp x<0
\Rightarrow |x-1|+|x-2|+...|x-100|=2500
hay 1-x+2-x+.............+100-x=2500
\Rightarrow 5050-100x=2500
\Rightarrow x=255