\(x\in Z\)để \(\frac{-4}{x-5}\in Z\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 8 2017

Để \(\frac{-4}{x-5}\)là một số nguyên 

\(\Rightarrow x-5\inƯ\left(-4\right)=\left\{-4,-1,1,4\right\}\)

Với x-5=-4 =>x=1

Với x-5=-1 =>x=4

Với x-5=1 =>x=6

Với x-5=4 =>x=9

Vậy x={1;4;6;9}

Ta có \(\frac{-4}{x-5}\)\(\Rightarrow-4⋮x-5\)\(\Rightarrow x-5\inƯ\left(-4\right)\)

\(Ư\left(-4\right)là-4;-1;1;4\)nên TH1 : x - 5 = - 4 => x = 1

                                                              TH2 : x - 5 = -1 => x = 4

                                                              TH3 : x - 5 = 1 => x = 6

                                                              TH4 : x - 5 = 4 => x = 9

18 tháng 11 2017

a, 4C = 12|x|+8/4|x|-5 = 3 + 23/|x|-5 <= 3 + 23/0-5 = -8/5

=> C <= -2/5

Dấu "=" xảy ra <=> x=0

Vậy Min ...

b, Để C thuộc N => 3|x|+2 chia hết cho 4|x|-5

=> 4.(3|x|+2) chia hết cho 4|x|-5

<=> 12|x|+8 chia hết cho 4|x|-5

<=> 3.(|x|+5) + 23 chia hết cho 4|x|-5

=> 23 chia hết chi 4|x|-5 [ vì 3.(4|x|-5) chia hết cho 4|x|-5 ]

Đến đó bạn tìm ước của 23 rùi giải

10 tháng 6 2018

a) ta có: \(A=\frac{2x}{x-2}=\frac{2x-4+4}{x-2}=\frac{2.\left(x-2\right)+4}{x-2}=\frac{2.\left(x-2\right)}{x-2}+\frac{4}{x-2}=2+\frac{4}{x-2}\)

Để \(A\inℤ\)

\(\Rightarrow\frac{4}{x-2}\inℤ\)

\(\Rightarrow4⋮x-2\Rightarrow x-2\inƯ_{\left(4\right)}=\left(4;-4;2;-2;1;-1\right)\)

nếu x -2 = 4 => x = 6 (TM)

x- 2= - 4 => x= - 2 (TM)

x- 2= 2 => x = 4 (TM)

x- 2 = -2 => x = 0 (TM)

x - 2 = 1 => x = 3 (TM) 

x - 2 = -1 => x=  1 (TM)

KL: \(x\in\left(6;-2;4;0;3;1\right)\)

c) ta có: \(C=\frac{x^2+2}{x+1}=\frac{\left(x+1\right).\left(x-1\right)+3}{x+1}=\frac{\left(x+1\right).\left(x-1\right)}{x+1}+\frac{3}{x+1}\)\(=x-1+\frac{3}{x+1}\)

Để \(C\inℤ\)

\(\Rightarrow\frac{3}{x+1}\inℤ\)

\(\Rightarrow3⋮x+1\Rightarrow x+1\inƯ_{\left(3\right)}=\left(3;-3;1;-1\right)\)

nếu x + 1 = 3 => x = 2 (TM)

x + 1 = - 3 => x = -4 (TM)

x + 1 = 1 => x = 0 

x + 1 = -1 => x = -2 (TM)

KL: \(x\in\left(2;-4;0;-2\right)\)

p/s

28 tháng 9 2016

Ta có:

\(B=\frac{2x^3+x^2+2x+4}{2x+1}=\frac{x^2.\left(2x+1\right)+2x+1+3}{2x+1}\)

\(B=\frac{\left(2x+1\right).\left(x^2+1\right)+3}{2x+1}\)

\(B=\frac{\left(2x+1\right).\left(x^2+1\right)}{2x+1}+\frac{3}{2x+1}\)

\(B=x^2+1+\frac{3}{2x+1}\)

Do x nguyên nên x2 + 1 nguyên

Để B nguyên thì \(\frac{3}{2x+1}\) nguyên

\(\Rightarrow3⋮2x+1\)

\(\Rightarrow2x+1\in\left\{1;-1;3;-3\right\}\)

\(\Rightarrow2x\in\left\{0;-2;2;-4\right\}\)

\(\Rightarrow x\in\left\{0;-1;1;-2\right\}\)

Vậy \(x\in\left\{0;-1;1;-2\right\}\)