\(x\in Z\)để A = \(\frac{x-5}{9-x}\)

a, A có giá tr...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 8 2018

A= \(\frac{x-5}{9-x}\)

<=>  \(\frac{4}{9-x}-1\)

=> A nguyên <=> (9-x) thuộc Ư (4) = { 1,-1,2,-2,4,-4}

Với 9-x = +- 1 => x= 8,10

9-x = +- 2 => x= 7,11

9-x = +-4 => x= 5, 13

Vây để A nguyên x = { 5,7,8,10,11,13}

20 tháng 2 2020

a, để A nguyên

=> 7 - x chia hết cho x - 5

=> 5 - x + 2 chia hết cho x - 5

=> -(x - 5) + 2 chia hết cho x - 5

=> 2 chia hết cho x - 5

=> x - 5 thuộc Ư(2)

=> x - 5 thuộc {-1;1-2;2}

=> x thuộc {4; 6; 3; 7}

19 tháng 8 2020

a. Vì A thuộc Z 

\(\Rightarrow x-2\in\left\{-5;-1;1;5\right\}\)

\(\Rightarrow x\in\left\{-3;1;3;7\right\}\)( tm x thuộc Z )

b. Ta có : \(B=\frac{x+2}{x-3}=\frac{x-3+5}{x-3}=1+\frac{5}{x-3}\)

Vì B thuộc Z nên 5 / x - 3 thuộc Z

\(\Rightarrow x-3\in\left\{-5;-1;1;5\right\}\)

\(\Rightarrow x\in\left\{-2;2;4;8\right\}\)( tm x thuộc Z )

c. Ta có : \(C=\frac{x^2-x}{x+1}=\frac{x^2+x-2x+2-2}{x+1}=\frac{x\left(x+1\right)-2x+2-2}{x+1}\)

\(=x-2-\frac{2}{x+1}\)

Vi C thuộc Z nên 2 / x + 1 thuộc Z

\(\Rightarrow x+1\in\left\{-2;-1;1;2\right\}\)

\(\Rightarrow x\in\left\{-3;-2;0;1\right\}\) ( tm x thuộc Z )

2 tháng 2 2017

a) Muốn C \(\in\)Z thì x+12    \(⋮\)x+5

                        \(\Rightarrow\) x+5+7 \(⋮\)x+5

                       \(\Rightarrow\)         7 \(⋮\)x+5

                       \(\Rightarrow\) x+5 \(\in\){-7 ; -1 ; 1 ; 7}

TH1:  x+5 = -7 \(\Rightarrow\) x= -12

TH2: x+5 = -1 \(\Rightarrow\) x= -6

TH3: x+5= 1  \(\Rightarrow\) x= -4

TH4: x+5= 7  \(\Rightarrow\)x= 2

Vậy x\(\in\){ -12 ; -6 ; -4 ; 2 }  thì \(\frac{x+12}{x+5}\)có giá trị nguyên

16 tháng 7 2016

a)Để A là số nguyên thì x-2 chia hết cho x+1

         Do đó ta có:

\(A=\frac{x-2}{x+1}=\frac{x+1+-3}{x+1}=1+\frac{-3}{x+1}\)

             \(\Rightarrow x+1\inƯ\left(-3\right)\)

Vậy Ư(-3)là:[1,-1,3,-3]

                   Ta có bảng sau:

x+1-3-113
x-4-202

         Vậy x=-4;-2;0;2

b)Để B là số nguyên thì x+4 chia hết cho x-1

          Do đó ta có:

\(A=\frac{x+4}{x-1}=\frac{x-1+5}{x-1}=1+\frac{5}{x-1}\)

        \(\Rightarrow x-1\inƯ\left(5\right)\)

Vậy Ư(5)là:[1,-1,5,-5]

           Ta có bảng sau:

x-1-5-115
x-4026

Vậy x=-4;0;2;6

16 tháng 7 2016

c) Để \(\frac{2x+7}{x+2}\) là số nguyên

\(\Leftrightarrow2x+7⋮x+2\)

\(\Rightarrow\left(2x+4\right)+3⋮x+2\)

\(\Rightarrow2\left(x+2\right)+3⋮x+2\)

\(\Rightarrow\begin{cases}2\left(x+2\right)⋮x+2\\3⋮x+2\end{cases}\)

\(\Rightarrow x+2\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\)

Ta có bảng sau :

x+2-3-113
x-5-3-11

Vậy \(x\in\left\{-3;-1;1;3\right\}\)

d) Để \(\frac{2x+9}{x+1}\) là số nguyên 

\(\Leftrightarrow2x+9⋮x+1\)

\(\Rightarrow\left(2x+2\right)+7⋮x+1\)

\(\Rightarrow2\left(x+1\right)+7⋮x+1\)

\(\Rightarrow\begin{cases}2\left(x+1\right)⋮x+1\\7⋮x+1\end{cases}\)

\(\Rightarrow x+1\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\)

Ta có bảng sau :

x+1-7-117
x-8-206

Vậy \(x\in\left\{-8;-2;0;6\right\}\)

3 tháng 5 2017

a) Ta có \(\frac{x-3}{x-2}=\frac{\left(x-2\right)-1}{x-2}=1-\frac{1}{x-2}\)

Để \(1-\frac{1}{x-2}\in Z\Rightarrow x-2\inƯ\left(1\right)\Rightarrow x-2\)thuộc 1;-1

+) Với x-2=1 thì \(x=3\)

+) Với x-2=-1 thì \(x=1\)

25 tháng 4 2018

Bài 1

2.|x+1|-3=5

2.|x+1|   =8

|x+1|     =4

=>x+1=4 hoặc x+1=-4

<=>x= 3 hoặc -5

Bài 3

     A=2/n-1

Để A có giá trị nguyên thì n là

2 phải chia hết cho n-1

U(2)={1,2,-1,-2}

Vậy A là số nguyên khi n=2;3;0;-1

k mk nha. Chúc bạn học giỏi

Thank you

25 tháng 4 2018

bài 1 :

\(2\cdot|x+1|-3=5\)

\(2\cdot|x+1|=5+3\)

\(2\cdot|x+1|=8\)

\(|x+1|=8\div2\)

\(|x+1|=4\)

\(x=4-3\)

\(x=3\Rightarrow|x|=3\)

bài 2 : có 2 trường hợp để \(n\in Z\)là \(A=2\)và \(A=4\)

TH1:

 \(2=\frac{n+1}{n-2}\Rightarrow2=\frac{6}{3}\left(n\in Z\right)\)

\(2=\frac{n+1}{n-2}\Rightarrow2=\frac{6-1}{3+2}=5\)

\(\Rightarrow n=5\)

TH2

\(4=\frac{n+1}{n-2}\Rightarrow4=\frac{4}{1}\left(n\in Z\right)\)

\(\Rightarrow4=\frac{4-1}{1+2}=3\)

\(\Rightarrow n=3\)

\(n\in\left\{5;3\right\}\left(n\in Z\right)\)

Bài 3  có 2 trường hợp là \(A=1\)và \(A=2\)

TH1:

\(1=\frac{2}{n-1}\Rightarrow1=\frac{2}{2}\)

\(1=\frac{2}{2+1}=3\)

\(\Rightarrow n=3\)

TH2 : 

\(2=\frac{2}{n-1}\Rightarrow2=\frac{2}{1}\)

\(2=\frac{2}{1+1}=2\)

\(\Rightarrow n=2\)

vậy \(\Rightarrow n\in\left\{3;2\right\}\)

19 tháng 8 2020

Để \(A=\frac{5}{x-2}\)có giá trị là 1 số nguyên thì:

\(5⋮x-2\)

Vì \(x\in Z\Rightarrow x-2\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)

Ta có bảng sau:

x-21-15-5
x317-3

Vậy \(x\in\left\{3;-1;7;-3\right\}\)

Để \(B=\frac{x+2}{x-3}\)có giá trị là 1 số nguyên thì:

\(x+2⋮x-3\)

=> \(\left(x-3\right)+5⋮x-3\)

=> \(5⋮x-3\)

Sau đó tiếp tục lý luận và lập bảng tìm trường hợp như của x trong ý a.

Ý c thì mình đang bị mung lung tí '-'

22 tháng 6 2018

 Câu a) :

x=-5/3

Câu b) :

GỢI Ý : 3n-5 phải chia hết cho n-4 để A là số nguyên ( đk : n khác 4)

30 tháng 7 2018

\(a,\left(\frac{1}{24.25}+\frac{1}{25.26}+...+\frac{1}{29.30}\right).120+x:\frac{1}{3}=-4\)

\(\left(\frac{1}{24}-\frac{1}{25}+\frac{1}{25}-\frac{1}{26}+...+\frac{1}{29}-\frac{1}{30}\right).120+3x=-4\)

\(\left(\frac{1}{24}-\frac{1}{30}\right).120+3x=-4\)

\(\frac{1}{120}.120+3x=-4\)

\(1+3x=-4\)

\(\Rightarrow3x=-5\)

\(\Rightarrow x=-\frac{5}{3}\)

\(b,A=\frac{3n-5}{n-4}=\frac{3n-12+7}{n-4}=3+\frac{7}{n-4}\)

Để \(A\in Z\Rightarrow7⋮n-4\Leftrightarrow n-4\in\left(1;-1;7;-7\right)\)

\(\Rightarrow n\in\left(5;3;11;-3\right)\)