Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có :
\(\frac{7}{2x+2}=\frac{3}{2y-4}=\frac{10}{2z+8}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{7}{2x+2}=\frac{3}{2y-4}=\frac{10}{2z+8}=\frac{7+3+10}{2x+2+2y-4+2z+8}=\frac{20}{2\left(x+y+z\right)+6}=\frac{20}{40}=\frac{1}{2}\)
\(\Rightarrow\hept{\begin{cases}2x+2=14\\2y-4=6\\2z+8=10\end{cases}}\Leftrightarrow\hept{\begin{cases}x=6\\y=5\\z=1\end{cases}}\)
ta có
\(\frac{7}{2x+2}=\frac{3}{2y-4}=\frac{5}{z+4}=\frac{7+3}{2x+2y+2-4}=\frac{10}{2x+2y+2-4}=\frac{10}{2\left(x+y\right)-4}=\frac{5}{x+y-1}\)
\(=\frac{10}{17-1+4}=\frac{10}{20}=\frac{1}{2}\)
từ đó bạn tính ra nha
\(\frac{x}{9}=\frac{y}{5}=\frac{z}{10}\)\(=\frac{x-y+z}{9-5+10}\)\(=5\)
---> x = 9.5 = 45
---> y = 5.5 = 25
---> z = 10.5 = 50
học tốt nhoa bạn
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{9}=\frac{y}{5}=\frac{z}{10}=\frac{x-y+z}{9-5+10}=\frac{70}{14}=5\)
\(\frac{x}{9}=5\Rightarrow x=45\)
\(\frac{y}{5}=5\Rightarrow y=25\)
\(\frac{z}{10}=5\Rightarrow z=50\)
Vậy x = 45; y = 25; z = 50
THEO TÍNH CHẤT DÃY TỈ SỐ BẰNG NHAU TA CÓ:
\(\frac{x}{4}=\frac{y}{3}=\frac{z}{9}=\frac{x}{4}=\frac{3y}{9}=\frac{4z}{36}=\frac{x-3y+4z}{4-9+36}=\frac{62}{31}=2\)
\(\Rightarrow\hept{\begin{cases}x=4\cdot2=8\\y=3\cdot2=6\\z=9\cdot2=18\end{cases}}\)
từ \(x:y:z=2:3:4\)
\(\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)
\(=\frac{x}{2}=\frac{3y}{9}=\frac{2z}{8}\)
\(=\frac{x+3y-2z}{2+9-8}=\frac{3}{3}=1\)
\(\Rightarrow\hept{\begin{cases}x=2\cdot1=2\\y=3\cdot1=3\\z=4\cdot1=4\end{cases}}\)
hình như mk thấy có phần tương tự trong sbt oán 7 ở phần nào đó thì phải . Bạn về nhà tìm thử xem sau đó mở đáp án ở sau mà coi
Lí luận chung cho cả 3 câu :
Vì GTTĐ luôn lớn hơn hoặc bằng 0
a) \(\Rightarrow\hept{\begin{cases}x+\frac{3}{7}=0\\y-\frac{4}{9}=0\\z+\frac{5}{11}=0\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{-3}{7}\\y=\frac{4}{9}\\z=\frac{-5}{11}\end{cases}}}\)
b)\(\Rightarrow\hept{\begin{cases}x-\frac{2}{5}=0\\x+y-\frac{1}{2}=0\\y-z+\frac{3}{5}=0\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{2}{5}\\y=\frac{1}{10}\\z=\frac{7}{10}\end{cases}}}\)
c)\(\Rightarrow\hept{\begin{cases}x+y-2,8=0\\y+z+4=0\\z+x-1,4=0\end{cases}\Rightarrow\hept{\begin{cases}x+y=2,8\\y+z=-4\\z+x=1,4\end{cases}}}\)
\(\Rightarrow x+y+y+z+z+x=2,8-4+1,4\)
\(\Rightarrow2\left(x+y+z\right)=0,2\)
\(\Rightarrow x+y+z=0,1\)
Từ đây tìm đc x, y, z
Áp dụng tc của dãy tỉ số bằng nhau ta có:
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{x+y+z}{2+3+4}=\frac{27}{9}=3\)
=>\(\begin{cases}x=6\\y=9\\z=12\end{cases}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
x/2 = y/3 = z/4 = x + y + z / 2 + 3 + 4 = 27/9 = 3
x/2 = 3 => x = 3 . 2 = 6
y/3 = 3 => y = 3 . 3 = 9
z/4 = 3 => z = 3 . 4 = 12
Vậy x = 6; y = 9 và z = 12.
\(3^x=\frac{9^4}{27^3}\)
\(3^x=\frac{\left(3^2\right)^4}{\left(3^3\right)^3}\)
\(3^x=\frac{3^8}{3^9}\)
\(3^x=3^{-1}\)
x = -1