Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình làm cho bạn 2 câu khó hơn còn mấy câu còn lại dungf phương pháp quy đồng rồi chuyển vế là tính được mà
c, <=> [(x-1)/2009 ]-1 +[ (x-2)/2008] -1 = [(x-3)/2007]-1 +[(x-4)/2006]-1
<=> (x-2010)/2009 + (x-2010)/2008 = (x-2010)/2007 + (x-2010)/2006
<=> (x-2010)*(1/2009+1/2008-1/2007-1/2006)=0
=> x-2010=0 => x=2010
d, TH1 : cả hai cùng âm
=>> 2X-4 <O => X< 2
Và 9-3x<0 =>> x> 3
=>> loại
Th2 cả hai cùng dương
2x-4>O => x>2
Và 9-3x>O => x<3
=>> 2<x<3 (tm)
Mình sẽ trình bày rõ hơn ở (2) nha
Ta có:
\(\frac{2}{x+1}=\frac{3}{2y-3}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{2}{x+1}=\frac{3}{2y-3}\) = \(\frac{2-3}{\left(x+1\right)-\left(2y-3\right)}=\frac{-1}{x+1-2y+3}=\frac{-1}{x-2y+4}\)
(Vì trước ngoặc của 2y - 3 là dấu trừ nên khi phá ngoặc thì nó sẽ trở thành dấu cộng.Đây là quy tắc phá ngoặc mà bạn đã được học ở lớp 6 đó)
Ahaha, mình cũng học rồi mà quên mất, cảm giác hiểu ra cái này khó diễn tả thật cậu ạ. Vui chả nói nên lời :))
À quên cảm ơn cậu nhé :^)
\(e,\frac{22}{15}-x=-\frac{8}{27}\)
=> \(x=\frac{22}{15}-\left[-\frac{8}{27}\right]\)
=> \(x=\frac{22}{15}+\frac{8}{27}\)
=> \(x=\frac{198}{135}+\frac{40}{135}=\frac{198+40}{135}=\frac{238}{135}\)
\(g,\left[\frac{2x}{5}-1\right]:\left[-5\right]=\frac{1}{4}\)
=> \(\left[\frac{2x}{5}-\frac{1}{1}\right]=\frac{1}{4}\cdot\left[-5\right]\)
=> \(\left[\frac{2x}{5}-\frac{5}{5}\right]=-\frac{5}{4}\)
=> \(\frac{2x-5}{5}=-\frac{5}{4}\)
=> \(2x-5=-\frac{5}{4}\cdot5=-\frac{25}{4}\)
=> \(2x=-\frac{5}{4}\)
=> \(x=-\frac{5}{8}\)
\(h,-2\frac{1}{4}x+9\frac{1}{4}=20\)
=> \(-\frac{9}{4}x+\frac{37}{4}=20\)
=> \(-\frac{9}{4}x=20-\frac{37}{4}=\frac{43}{4}\)
=> \(x=\frac{43}{4}:\left[-\frac{9}{4}\right]=\frac{43}{4}\cdot\left[-\frac{4}{9}\right]=\frac{43}{1}\cdot\left[-\frac{1}{9}\right]=-\frac{43}{9}\)
\(i,-4\frac{3}{5}\cdot2\frac{4}{23}\le x\le-2\frac{3}{5}:1\frac{6}{15}\)
=> \(-\frac{23}{5}\cdot\frac{50}{23}\le x\le-\frac{13}{5}:\frac{21}{15}\)
=> \(-\frac{1}{1}\cdot\frac{10}{1}\le x\le-\frac{13}{5}\cdot\frac{15}{21}\)
=> \(-10\le x\le-\frac{13}{1}\cdot\frac{3}{21}\)
=> \(-10\le x\le-\frac{13}{1}\cdot\frac{1}{7}\)
=> \(-10\le x\le-\frac{13}{7}\)
Đến đây tìm x
\(=\frac{16}{5}.\frac{15}{16}-\left(\frac{3}{4}+\frac{2}{7}\right):\left(\frac{-29}{28}\right)\)
\(=3-\left(\frac{21}{28}+\frac{8}{28}\right):\left(\frac{-29}{28}\right)\)
\(=3-\left(\frac{29}{28}\right).\left(\frac{-28}{29}\right)\)
\(=3-\left(-1\right)\)
\(=4\)
b) \(=\left(\frac{1}{4}+\frac{25}{2}-\frac{5}{16}\right):\left(12-\frac{7}{12}:\left(\frac{3}{8}-\frac{1}{12}\right)\right)\)
\(=\left(\frac{4}{16}+\frac{200}{16}-\frac{5}{16}\right):\left(12-\frac{7}{12}:\left(\frac{3.3}{2.3.4}-\frac{2}{2.3.4}\right)\right)\)
\(=\left(\frac{199}{16}\right):\left(12-\frac{7}{12}:\left(\frac{9}{24}-\frac{2}{24}\right)\right)\)
\(=\frac{199}{16}:\left(12-\frac{7}{12}.\frac{24}{7}\right)\)
\(=\frac{199}{16}:\left(12-2\right)\)
\(=\frac{199}{16}:10\)
\(=\frac{199}{160}\)
c) \(\left(\frac{-3}{5}+\frac{5}{11}\right):\frac{-3}{7}+\left(\frac{-2}{5}+\frac{6}{5}\right):\frac{-3}{7}\)
\(\left(\frac{-33}{55}+\frac{25}{55}\right):\frac{-3}{7}+\left(\frac{4}{5}\right):\frac{-3}{7}\)
\(\left(\frac{-8}{55}\right).\frac{-7}{3}+\frac{4}{5}.\frac{-7}{3}\)
\(\frac{-7}{3}\left(\frac{-8}{55}+\frac{4}{5}\right)\)
\(\frac{-7}{3}.\frac{36}{55}=\frac{-84}{55}\)
a) \(\left(x-1\right)\left(x-2\right)>0\)
=> \(\hept{\begin{cases}x-1>0\\x-2>0\end{cases}}\) hoặc \(\hept{\begin{cases}x-1< 0\\x-2< 0\end{cases}}\)
=> \(\hept{\begin{cases}x>1\\x>2\end{cases}}\) hoặc \(\hept{\begin{cases}x< 1\\x< 2\end{cases}}\)
=> \(1< x< 2\)
b) 2x - 3 < 0
=> 2x < 3
=> x < 3/2
c) \(\left(2x-4\right)\left(9-3x\right)>0\)
=> 2(x - 2). 3(3 - x) > 0
=> (x - 2)(3 - x) > 0
=> \(\hept{\begin{cases}x-2>0\\3-x>0\end{cases}}\) hoặc \(\hept{\begin{cases}x-2< 0\\3-x< 0\end{cases}}\)
=> \(\hept{\begin{cases}x>2\\x< 3\end{cases}}\) hoặc \(\hept{\begin{cases}x< 2\\x>3\end{cases}}\)
=> 2 < x < 3
a) Ta có:
\(\frac{4}{15}+\frac{1}{6}-\frac{4}{9}>\frac{2}{3}-x-\frac{1}{4}\\ \Rightarrow x+\frac{4}{15}+\frac{1}{6}-\frac{4}{9}>\frac{2}{3}-\frac{1}{4}\\ \Rightarrow x>\frac{2}{3}+\frac{4}{9}-\frac{1}{4}-\frac{1}{6}-\frac{4}{15}\\ \Rightarrow x>\left(\frac{6}{9}+\frac{4}{9}\right)-\left(\frac{15}{60}+\frac{10}{60}+\frac{16}{60}\right)\)
\(x>\frac{10}{9}-\frac{41}{60}\\ x>\frac{200-123}{180}\Rightarrow x>\frac{77}{180}\)
b) Bất đẳng thức kép
\(4-1\frac{1}{3}< x+\frac{1}{5}< 12\frac{2}{7}-3\frac{3}{8}\)
có nghĩa là ta phải có hai bất đẳng thức đồng thời:
\(x+\frac{1}{5}>4-1\frac{1}{3}\) và \(x+\frac{1}{5}< 12\frac{2}{7}-3\frac{3}{8}\)
Ta tìm các giá trị của x cần thỏa mãn bất đẳng thức thứ nhất:
\(x+\frac{1}{5}>4-1\frac{1}{3}\Rightarrow x>4-1\frac{1}{3}-\frac{1}{5}\\ \Rightarrow x>\frac{37}{15}\)
Từ bất đẳng thức thứ hai
\(x+\frac{1}{5}< 12\frac{2}{7}-3\frac{3}{8}\Rightarrow x< \frac{86}{7}-\frac{27}{8}-\frac{1}{5}\\ \Rightarrow x< \frac{2439}{280}.\)
Như vậy các số hữu tỉ x cần thỏa mãn:
\(\frac{37}{15}< x< \frac{2439}{280}\)
\(\frac{4}{15}+\frac{1}{6}-\frac{4}{9}>\frac{2}{3}-x-\frac{1}{4}\)
\(\frac{4}{15}+\frac{1}{6}-\frac{4}{9}-\frac{2}{3}+\frac{1}{4}>-x\)
\(-\frac{77}{180}>-x\)
\(x>\frac{77}{108}\)