\(\frac{1}{1.2}\)+\(\frac{1}{2.3}\)+...+
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 7 2017

Ta có:

\(=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{x\left(x+1\right)}=\frac{19}{20}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{19}{20}\)

\(=1-\frac{1}{x+1}=\frac{19}{20}\)

\(\frac{1}{x+1}=1-\frac{19}{20}\)

\(\frac{1}{x+1}=\frac{1}{20}\)

\(x+1=20\)

\(x=19\)

10 tháng 7 2017

\(\frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{x\left(x+1\right)}\)

\(=\frac{2-1}{1.2}+\frac{3-2}{2.3}+....+\frac{x+1-x}{x\left(x+1\right)}=\frac{19}{20}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{x}-\frac{1}{\left(x+1\right)}=\frac{19}{20}\)

\(=1-\frac{1}{\left(x+1\right)}=\frac{19}{20}\)

\(=\frac{1}{\left(x+1\right)}=1-\frac{19}{20}=\frac{1}{20}\)

\(\Rightarrow x=\frac{\left(20-1\right)}{1}=19\)

Vậy \(x=19\)

26 tháng 2 2018

a)hình như =55

2 tháng 8 2019

\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{x\left(x+1\right)}=\frac{4}{5}\)

\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{4}{5}\)

\(1-\frac{1}{x+1}=\frac{4}{5}\)

\(\frac{x}{x+1}=\frac{4}{5}\)

\(\frac{x}{x+1}=\frac{4}{4+1}\)

\(\Rightarrow x=4\)

Vậy x = 4

=))

2 tháng 8 2019

\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x\left(x+1\right)}=\frac{4}{5}\)

\(\Leftrightarrow1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{4}{5}\)

\(\Leftrightarrow1-\frac{1}{x+1}=\frac{4}{5}\)

\(\Leftrightarrow\frac{1}{x-1}=1-\frac{4}{5}\)

\(\Leftrightarrow\frac{1}{x-1}=\frac{1}{5}\)

\(\Leftrightarrow x-1=5\)

\(\Leftrightarrow x=5+1\)

\(\Leftrightarrow x=6\)

~ Rất vui vì giúp đc bn ~ ^_<

11 tháng 5 2018

a/ \(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}\)

\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}=1-\frac{1}{10}\)

=> \(A=\frac{9}{10}\)

b/ \(A=\frac{n+2}{n-5}=\frac{n-5+7}{n-5}=\frac{n-5}{n-5}+\frac{7}{n-5}\)

=> \(A=1+\frac{7}{n-5}\)

Để A nguyên => 7 chia hết cho n-5 => n-5=(-7; -1; 1; 7)

=> n=(-2; 4, 6, 8)

19 tháng 3 2017

3/100

19 tháng 3 2017

3/100

22 tháng 7 2017

\(\left(x+\frac{1}{2}\right)+\left(x+\frac{1}{2}\right)+\left(x+\frac{1}{2}\right)=1\)

\(\Leftrightarrow3x+\left(\frac{1}{2}+\frac{1}{2}+\frac{1}{2}\right)=1\)

\(\Leftrightarrow3x+\frac{3}{2}=1\)

\(\Leftrightarrow3x=-\frac{1}{2}\)

\(\Leftrightarrow x=-\frac{1}{2}\div3=-\frac{1}{6}\)

Sửa đề \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{x.\left(x+1\right)}=\frac{99}{100}\)

\(\Leftrightarrow1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2}-\frac{1}{x+1}=\frac{99}{100}\)

\(\Leftrightarrow1-\frac{1}{x+1}=\frac{99}{100}\)

\(\Leftrightarrow\frac{1}{x+1}=\frac{1}{100}\)

\(\Leftrightarrow x=99\)

22 tháng 7 2017

a) => ( x + 1/2 ) . 3 = 1

=> 3x + 3/2 = 1

=> 3x = 1 - 3/2

=> 3x = -1/2

=> x = -1/2 : 3 = -1/6

25 tháng 3 2018

x=2009 dễ mà

23 tháng 3 2018

mk làm câu c cho nó dễ

c)1/1.2+1/2.3+...+1/x.(x+1)=2009/2010

=1-1/2+1/2-1/3+...+1/x-1/x+1=2009/2010

=1-1/x+1=2009/2010

=1/x+1=1-2009/2010

=1/x+1=1/2010

=) x+1=2010

x         =2010-1

x         =2009

\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)

\(=1-\frac{1}{50}=\frac{49}{50}\)

9 tháng 6 2020

\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)

\(A=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)

\(A=\frac{1}{1}-\frac{1}{50}\)

\(A=\frac{50}{50}-\frac{1}{50}=\frac{49}{50}\)

bài 2 tính trong ngoặc tương tự bài trên rồi  tìm x

bài 3 

vì giá trị nguyên của x để B là 1 số nguyên

\(\Rightarrow x+4⋮x+3\)

lập bảng

16 tháng 5 2017

Ta có: \(\frac{1}{1.2}=\frac{3}{1.2.3}\) ;\(\frac{1}{1.2+2.3}=\frac{3}{2.3.4}\)\(\frac{1}{2.3+3.4}=\frac{3}{3.4.5}\); ......;\(\frac{1}{1.2+2.3+3.4+...+n\left(n+1\right)}=\frac{3}{n\left(n+1\right)\left(n+2\right)}\)

=> \(S=\frac{3}{1.2.3}+\frac{3}{2.3.4}+\frac{3}{3.4.5}+...+\frac{3}{n\left(n+1\right)\left(n+2\right)}\)

=> \(\frac{2S}{3}=\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{n\left(n+1\right)\left(n+2\right)}\)

Ta lại có: \(\frac{2}{1.2.3}=\frac{1}{1.2}-\frac{1}{2.3}\)\(\frac{2}{2.3.4}=\frac{1}{2.3}-\frac{1}{3.4}\)\(\frac{2}{3.4.5}=\frac{1}{3.4}-\frac{1}{4.5}\);....;\(\frac{2}{n\left(n+1\right)\left(n+2\right)}=\frac{1}{n\left(n+1\right)}-\frac{1}{\left(n+1\right)\left(n+2\right)}\)

=> \(\frac{2S}{3}=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{n\left(n+1\right)}-\frac{1}{\left(n+1\right)\left(n+2\right)}\)

=> \(\frac{2S}{3}=\frac{1}{1.2}-\frac{1}{\left(n+1\right)\left(n+2\right)}\)=> \(S=\frac{3}{4}-\frac{3}{2\left(n+1\right)\left(n+2\right)}< \frac{3}{4}\)

=> \(S< \frac{3}{4}\)

16 tháng 5 2017

Mình nhầm 1 chỗ: \(\frac{1}{1.2+2.3+3.4}=\frac{3}{3.4.5}\)

26 tháng 3 2019

a)Xét 1/2-1/3-1/6=3/6-2/6-1/6=0

=> (1+2+3+...+2018).(3/1.2+3/2.3+...+3/2018.2019).(1/2-1/3-1/6)=(1+2+3+...+2018).(3/1.2+3/2.3+...+3/2018.2019).0=0

b) 4A=1.2.3.4+2.3.4.4+..+x(x+1)(x+2)4

         =1.2.3.4+2.3.4.5-1.2.3.4+...+x(x+1)(x+2)(x+3)-x(x+1)(x+2)(x-1)

         = (x-1)x(x+1)(x+2)

=> A=x(x+1)(x+2)(x-1)/4