Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = 2008 x 2008
= (2007 + 1) x 2008
= 2007 x 2008 + 2008 x 1
= 2007 x 2008 + 2008
B = 2007 x 2009
= 2007 x (2008 +1)
= 2007 x 2008 + 2007 x 1
= 2007 x 2008 + 2007
Vì 2008 < 2007 => A > B
Ta có \(B=2007\times2009\)\(=\left(2008-1\right)\times\left(2008+1\right)\)\(=2008\times2008+2008-2008-1\)\(=2008\times2008-1\)
Vì \(-1< 0\)nên \(2008\times2008-1< 2008\times2008\)hay \(B< A\)
\(\frac{2009x2008-1}{2007x2009+2008}=\frac{2009x2007+2009-1}{2009x2007+2008}=1.\)
vậy biểu thức trên =1
b, \(\frac{x+1}{2009}+\frac{x+2}{2009}=\frac{x+10}{2000}+\frac{x+11}{1999}\)
\(\Rightarrow\left(\frac{x+1}{2009}+1\right)+\left(\frac{x+2}{2008}+1\right)=\left(\frac{x+10}{2000}+1\right)+\left(\frac{x+11}{1999}+1\right)\)
\(\Rightarrow\frac{x+1+2009}{2009}+\frac{x+2+2008}{2008}=\frac{x+10+2000}{2000}+\frac{x+11+1999}{1999}\)
\(\Rightarrow\frac{x+2010}{2009}+\frac{x+2010}{2008}=\frac{x+2010}{2000}+\frac{x+2010}{1999}\)
\(\Rightarrow\frac{x+2010}{2009}+\frac{x+2010}{2008}-\frac{x+2010}{2000}-\frac{x+2010}{1999}=0\)
\(\Rightarrow\left(x+2010\right)\left(\frac{1}{2009}+\frac{1}{2008}-\frac{1}{2000}-\frac{1}{1999}\right)=0\)
Mà \(\frac{1}{2009}+\frac{1}{2008}-\frac{1}{2000}-\frac{1}{1999}\ne0\)
=> x + 2010 = 0 => x = -2010
2009 + 2008 + 2007 + ..... + (x + 1) + x = 2009
x + (x + 1) + (x + 2) + .......... + 2008 + 2009 = 2009
Áp dụng công thức tính dãy số ta có :
\(\frac{\left[\left(2009-x\right):1+1\right].\left(2009+x\right)}{2}=2009\)
\(\frac{\left[2009-x+1\right]\left(2009+x\right)}{2}=2009\)
\(\left[2008-x\right]\left(2009+x\right)=4018\)
\(2008\left(2009+x\right)-x\left(2009+x\right)=4018\)
\(2008.2009+2008x-\left(2009x+x^2\right)=4018\)
2008.2009 + 2008x - 2009x - x2 = 4018
2008.2009 - x - x2 = 4018
2008.2009 - x(x + 1) = 4018
x(x + 1) = 4034072 - 4018
x(x + 1) = 4030054
Còn lại cậu dò tìm số x là được !!!
Lời giải:
\(x=\frac{1}{2^{2009}}+\frac{2}{2^{2008}}+\frac{3}{2^{2007}}+....+\frac{2008}{2^2}+\frac{2009}{2}\)
\(2x = \frac{1}{2^{2008}}+\frac{2}{2^{2007}}+\frac{3}{2^{2006}}+...+\frac{2008}{2}+2009\)
\(\Rightarrow x=2x-x=2009-\frac{1}{2}-\frac{1}{2^2}-...-\frac{1}{2^{2008}}-\frac{1}{2^{2009}}\)
\(\Rightarrow 2009-x=\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2008}}+\frac{1}{2^{2009}}\)
\(\Rightarrow 2(2009-x)=1+\frac{1}{2}+....+\frac{1}{2^{2007}}+\frac{1}{2^{2008}}\)
\(\Rightarrow 2(2009-x)-(2009-x)=1-\frac{1}{2^{2009}}\)
\(\Rightarrow 2009-x=1-\frac{1}{2^{2009}}\\ \Rightarrow x=2009-(1-\frac{1}{2^{2009}})=2008+\frac{1}{2^{2009}}\)
\(\dfrac{x-1}{2009}+\dfrac{x-2}{2008}=\dfrac{x-3}{2007}+\dfrac{x-4}{2006}\)
\(\dfrac{x-1}{2009}-1+\dfrac{x-2}{2008}-1=\dfrac{x-3}{2007}-1+\dfrac{x-4}{2006}\)
\(\dfrac{x-2010}{2009}+\dfrac{x-2010}{2008}-\dfrac{x-2010}{2007}-\dfrac{x-2010}{2006}=0\)
\(\left(x-2010\right)\times\left(\dfrac{1}{2009}+\dfrac{1}{2008}-\dfrac{1}{2007}-\dfrac{1}{2006}\right)=0\)
Vì \(\dfrac{1}{2009}+\dfrac{1}{2008}-\dfrac{1}{2007}-\dfrac{1}{2006}\ne0\)
=> \(x-2010=0\)
\(x=2010\)
\(\dfrac{x-1}{2009}\)+\(\dfrac{x-2}{2008}\)=\(\dfrac{x-3}{2007}\)+\(\dfrac{x-4}{2006}\)
=>\(\dfrac{x-1}{2009}\)-1+\(\dfrac{x-2}{2008}\)+1=\(\dfrac{x-3}{2007}\)-1+\(\dfrac{x-4}{2006}\)-1
=>(x-2010)x(\(\dfrac{1}{2009}\)+\(\dfrac{1}{2008}\)-\(\dfrac{1}{2007}\)-\(\dfrac{1}{2006}\))=0
=>x-2010=0 (vì \(\dfrac{1}{2009}\)+\(\dfrac{1}{2008}\)-\(\dfrac{1}{2007}\)\(\dfrac{1}{2006}\)≠0)
=>x=2010
a)=> (2008+x).2008/2=2008
=>(2008+x)=2
=>x=-2006