Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có : \(\frac{x+1}{x-4}>0\)
Thì sảy ra 2 trường hợp
Th1 : x + 1 > 0 và x - 4 > 0 => x > -1 ; x > 4
Vậy x > 4
Th2 : x + 1 < 0 và x - 4 < 0 => x < -1 ; x < 4
Vậy x < (-1) .
Ta có : \(\left(x+2\right)\left(x-3\right)< 0\)
Th1 : \(\hept{\begin{cases}x+2< 0\\x-3>0\end{cases}\Rightarrow\hept{\begin{cases}x< -2\\x>3\end{cases}}\left(\text{Vô lý }\right)}\)
Th2 : \(\hept{\begin{cases}x+2>0\\x-3< 0\end{cases}\Rightarrow\hept{\begin{cases}x>-2\\x< 3\end{cases}\Rightarrow}-2< x< 3}\)

a)
\(\left(3x+\dfrac{1}{3}\right)\left(x-\dfrac{1}{2}\right)=0\\ \Rightarrow\left[{}\begin{matrix}3x+\dfrac{1}{3}=0\\x-\dfrac{1}{2}=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-\dfrac{1}{9}\\x=\dfrac{1}{2}\end{matrix}\right.\)
b)
\(\left(x-\dfrac{3}{2}\right)\left(2x+1\right)>0\\ \Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-\dfrac{3}{2}>0\\2x+1>0\end{matrix}\right.\\\left\{{}\begin{matrix}x-\dfrac{3}{2}< 0\\2x+1< 0\end{matrix}\right.\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x>\dfrac{3}{2}\\x>-\dfrac{1}{2}\end{matrix}\right.\\\left\{{}\begin{matrix}x< \dfrac{3}{2}\\x< -\dfrac{1}{2}\end{matrix}\right.\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x>\dfrac{3}{2}\\x< -\dfrac{1}{2}\end{matrix}\right.\)

a: 1-2x<7
=>-2x<6
hay x>-3
b: (x-1)(x-2)>0
=>x-2>0 hoặc x-1<0
=>x>2 hoặc x<1
c: \(\left(x-2\right)^2\cdot\left(x+1\right)\left(x-4\right)< 0\)
=>(x+1)(x-4)<0
=>-1<x<4

a)\(-x^2\left(x^2-4\right)=-25\left(x^2-4\right)\)
\(\Leftrightarrow-x^2=-25\)
\(\Leftrightarrow x^2=25\)
\(\Leftrightarrow x=\pm5\)
\(\left(x-1\right)^3-x\left(x-2\right)^2-\left(x-2\right)=0\)
\(\Leftrightarrow x^3-3x^2+3x-1-x\left(x^2-4x+4\right)-\left(x-2\right)=0\)
\(\Leftrightarrow x^3-3x^2+3x-1-x^3+4x^2-4x-x+2=0\)
\(\Leftrightarrow x^2-2x+1=0\)
\(\Leftrightarrow\left(x-1\right)^2=0\)
\(\Leftrightarrow x-1=0\)
\(\Leftrightarrow x=1\)
Vậy x = 1
Áp dùng hằng đẳng thức ta có :
\(x^3-3x^2+3x-1-x^3+4x^2-4x-x+2=0\)
\(x^2-2x+1=0\)
\(\left(x-1\right)^2=0\)
\(\left(x-1\right)=0\)
\(x=1\)