Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Ta có \(\frac{1}{5.8}+\frac{1}{8.11}+\frac{1}{11.14}+...+\frac{1}{x\left(x+3\right)}=\frac{101}{1540}\)
=)\(\frac{3}{5.8}+\frac{3}{8.11}+\frac{3}{11.14}+...+\frac{3}{x\left(x+3\right)}=\frac{303}{1540}\)
=)\(\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+...+\frac{1}{x}-\frac{1}{x+3}=\frac{303}{1540}\)
Suy ra \(\frac{1}{5}-\frac{1}{x+3}\)= \(\frac{303}{1540}\)=)\(\frac{1}{x+3}=\frac{1}{305}\)=) \(x+3=305\)=) \(x=302\)
A ) \(\frac{1}{3}\left(\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+.....+\frac{1}{x}-\frac{1}{x+3}\right)=\frac{101}{1540}.\)
=\(\frac{1}{3}\left(\frac{1}{5}-\frac{1}{x+3}\right)\)=101/1540
=\(\frac{101}{1540}:\frac{1}{3}=\frac{1}{5}-\frac{1}{x+3}\)
=tới đó bn tự tính nhé
a) \(\frac{1}{5.8}+\frac{1}{8.11}+\frac{1}{11.14}+...+\frac{1}{x\left(x+3\right)}=\frac{101}{1540}\)
\(\Rightarrow\frac{1}{3}\left(\frac{3}{5.8}+\frac{3}{8.11}+...+\frac{3}{x\left(x+3\right)}\right)=\frac{101}{1540}\)
\(\Rightarrow\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{x}-\frac{1}{x+3}=\frac{303}{1540}\)
\(\Rightarrow\frac{1}{5}-\frac{1}{x+3}=\frac{303}{1540}\)
\(\Rightarrow\frac{1}{x+3}=\frac{1}{308}\)
\(\Rightarrow x+3=308\)
\(\Rightarrow x=305\)
Vậy x = 305
a, \(\dfrac{1}{5.8}\)+\(\dfrac{1}{8.11}\)+\(\dfrac{1}{11.14}\)+...+\(\dfrac{1}{x\left(x+3\right)}\)=\(\dfrac{101}{1540}\)
\(\dfrac{1}{3}\)(\(\dfrac{3}{5.8}\)+\(\dfrac{3}{8.11}\)+\(\dfrac{3}{11.14}\)+...+\(\dfrac{3}{x\left(x+3\right)}\))=\(\dfrac{101}{1540}\)
\(\dfrac{1}{3}\)(\(\dfrac{1}{5}\)-\(\dfrac{1}{8}\)+\(\dfrac{1}{8}\)-\(\dfrac{1}{11}\)+...+\(\dfrac{1}{x}\)-\(\dfrac{1}{x+3}\))=\(\dfrac{101}{1540}\)
\(\dfrac{1}{3}\)(\(\dfrac{1}{5}\)-\(\dfrac{1}{x+3}\))=\(\dfrac{101}{1540}\)
\(\dfrac{1}{5}\)-\(\dfrac{1}{x+3}\)=\(\dfrac{101}{1540}\) : \(\dfrac{1}{3}\)
\(\dfrac{1}{5}\)-\(\dfrac{1}{x+3}\)=\(\dfrac{303}{1540}\)
\(\dfrac{1}{x+3}\)=\(\dfrac{1}{5}\)-\(\dfrac{303}{1540}\)
\(\dfrac{1}{x+3}\)=\(\dfrac{1}{308}\)
<=>1(x+3)=308.1
<=>1(x+3)=308
<=> x+3=308:1
<=> x+3=308
<=> x=308-3
<=> x=305
b,1+\(\dfrac{1}{3}\)+\(\dfrac{1}{6}\)+\(\dfrac{1}{10}\)+...+\(\dfrac{1}{x\left(x+1\right):2}\)=1\(\dfrac{1991}{1993}\)
\(\dfrac{2}{2}+\dfrac{2}{6}+\dfrac{2}{12}+\dfrac{2}{20}+...+\dfrac{2}{x\left(x+3\right)}=\dfrac{3984}{1993}\)\(2\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{x\left(x+1\right)}\right)=\dfrac{3984}{1993}\)
\(2\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{x}-\dfrac{1}{x+1}\right)=\dfrac{3984}{1993}\)
\(2\left(1-\dfrac{1}{x+1}\right)=\dfrac{3984}{1993}\)
\(1-\dfrac{1}{x+1}=\dfrac{3984}{1993}:2\)
\(1-\dfrac{1}{x+1}=\dfrac{1992}{1993}\)
\(\dfrac{1}{x+1}=1-\dfrac{1992}{1993}\)
\(\dfrac{1}{x+1}=\dfrac{1}{1993}\)
<=>1(x+1)=1993.1
<=>1(x+1)=1993
<=> x+1=1993 : 1
<=> x+1=1993
<=> x=1993-1
<=> x=1992
a) Đặt \(A=\frac{1}{5.8}+\frac{1}{8.11}+\frac{1}{11.14}+.....+\frac{1}{\left(x-2\right)x}+\frac{1}{x\left(x+2\right)}\)
=> \(3A=\frac{3}{5.8}+\frac{3}{8.11}+\frac{3}{11.14}+.....+\frac{3}{\left(x-2\right)x}+\frac{3}{x\left(x+2\right)}\)
=> \(3A=\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+....+\frac{1}{\left(x-2\right)}-\frac{1}{x}+\frac{1}{x}-\frac{1}{x+2}\)
=> 3A = \(\frac{1}{5}-\frac{1}{x+2}\)
=> A = \(\frac{1}{15}-\frac{1}{3x+6}\)
Mà : A = \(\frac{101}{1540}\)
=> \(\frac{1}{15}-\frac{1}{3x+6}=\frac{101}{1540}\)
=> \(\frac{1}{3x+6}=\frac{1}{15}-\frac{101}{1540}=\frac{1}{924}\)
=> 3x + 6 = 924
=> 3(x + 2) = 924
=> x + 2 = 308
=> x = 306
a) Ta có: \({{1} \over x(x+2)}= {{1} \over 3}({{1} \over x}-{{1} \over x+2})\) \(\Rightarrow\) \({{1} \over 3}({{1} \over 5}-{{1} \over 8}+{{1} \over 8}-...+{{1} \over x}-{{1} \over x+2})={{101} \over 1540} \)\(\Leftrightarrow\) \({{1} \over 3}({{1} \over 5}-{{1} \over x+2})={{101} \over 1540}\)\(\Leftrightarrow\)x+2 = 308 \(\Leftrightarrow\) x=306 Lúc sau lm hơi tắt mọi người thông cảm
\(\frac{3}{5\cdot8}+\frac{3}{8\cdot11}+...+\frac{3}{x\left(x+3\right)}=\frac{303}{1540}\)
\(\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{x}-\frac{1}{x+3}=\frac{303}{1540}\)
\(\frac{1}{5}-\frac{1}{x+3}=\frac{303}{1540}\)
\(\frac{1}{x+3}=\frac{1}{308}\)
\(\Rightarrow x+3=308\)
\(\Rightarrow x=305\)
a) \(\frac{1}{5.8}+\frac{1}{8.11}+\frac{1}{11.14}+...+\frac{1}{x.\left(x+3\right)}=\frac{101}{1540}\)
\(\frac{1}{3}.\left(\frac{3}{5.8}+\frac{3}{8.11}+\frac{3}{11.14}+...+\frac{3}{x.\left(x+3\right)}\right)=\frac{101}{1540}\)
\(\frac{1}{3}.\left(\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+...+\frac{1}{x}-\frac{1}{x+3}\right)=\frac{101}{1540}\)
\(\frac{1}{3}.\left(\frac{1}{5}-\frac{1}{x+3}\right)=\frac{101}{1540}\)
\(\frac{1}{5}-\frac{1}{x+3}=\frac{101}{1540}:\frac{1}{3}\)
\(\frac{1}{5}-\frac{1}{x+3}=\frac{303}{1540}\)
\(\frac{1}{x+3}=\frac{1}{5}-\frac{303}{1540}\)
\(\frac{1}{x+3}=\frac{1}{308}\)
\(\Rightarrow x+3=308\)
\(\Leftrightarrow x=308-3\)
\(\Leftrightarrow x=305\)
Vậy \(x=305\)
\(a)\frac{1}{5\cdot8}+\frac{1}{8\cdot11}+\frac{1}{11\cdot14}+...+\frac{1}{x(x+3)}=\frac{101}{1540}\)
\(\Rightarrow\frac{1}{3}\left[(\frac{1}{5}-\frac{1}{8})+(\frac{1}{8}-\frac{1}{11}+...+\frac{1}{x}-\frac{1}{x+3})\right]=\frac{101}{1540}\)
\(\Rightarrow\frac{1}{3}\left[\frac{1}{5}-\frac{1}{x+3}\right]=\frac{101}{1540}\)
\(\Rightarrow\frac{1}{5}-\frac{1}{x+3}=\frac{101}{1540}:\frac{1}{3}\)
\(\Rightarrow\frac{1}{5}-\frac{1}{x+3}=\frac{303}{1540}\)
\(\Rightarrow\frac{1}{x+3}=\frac{1}{5}-\frac{303}{1540}=\frac{5}{1540}=\frac{1}{308}\)
\(\Rightarrow x+3=308\Rightarrow x=305\)
\(b)x-(\frac{50x}{100}-\frac{25x}{200})=\frac{45}{4}\)
\(\Rightarrow x-(\frac{100x}{200}-\frac{25x}{200})=\frac{45}{4}\)
\(\Rightarrow x-\frac{5x}{8}=\frac{45}{4}\)
\(\Rightarrow\frac{3x}{8}=\frac{45}{4}\)
\(\Rightarrow3x=\frac{45}{4}\cdot8\)
\(\Rightarrow3x=90\Rightarrow x=30\)
\(c)1+2+3+4+...+x=820\)
Ta có : \(1+2+3+4+...+x=\frac{(1+x)\cdot x}{2}\)
Do đó : \(\frac{(1+x)\cdot x}{2}=820\)
\(\Rightarrow(1+x)\cdot x=820\cdot2\)
\(\Rightarrow(1+x)\cdot x=1640\)
\(\Rightarrow(1+x)\cdot x=40\cdot41\)
Vì x và x + 1 là hai số tự nhiên liên tiếp nên => x = 40
Chúc bạn học tốt :3
a)\(\frac{1}{5.8}+\frac{1}{8.11}+.....+\frac{1}{x\left(x+3\right)}=\frac{101}{1540}\)
\(\frac{3}{5.8}+\frac{3}{8.11}+...+\frac{3}{x\left(x+3\right)}=\frac{101}{1540}\)
\(\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-...-\frac{1}{x+3}=\frac{101}{1540}\)
\(\frac{1}{5}-\frac{1}{x+3}=\frac{101}{1540}\Rightarrow\frac{1}{x+3}=\frac{1}{5}-\frac{101}{1540}=\frac{207}{1540}\)
\(\frac{1}{x+3}=\frac{207}{1540}\Leftrightarrow207\left(x+3\right)=1540\)
\(207x+621=1540\)
\(207x=1540-621=919\Rightarrow x=\frac{919}{207}\)
\(\frac{1}{5.8}+\frac{1}{8.11}+\frac{1}{11.14}+...+\frac{1}{x\left(x+3\right)}=\frac{101}{1540}\)
\(\Rightarrow3\left(\frac{1}{5.8}+\frac{1}{8.11}+\frac{1}{11.14}+...+\frac{1}{x\left(x+3\right)}\right)=3.\frac{101}{1540}\)
\(\Rightarrow\frac{3}{5.8}+\frac{3}{8.11}+\frac{3}{11.14}+...+\frac{3}{x\left(x+3\right)}=\frac{303}{1540}\)
\(\Rightarrow\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+...+\frac{1}{x}-\frac{1}{x+3}=\frac{303}{1540}\)
\(\Rightarrow\frac{1}{5}-\frac{1}{x+3}=\frac{303}{1540}\)
\(\Rightarrow\frac{1}{x+3}=\frac{1}{5}-\frac{303}{1540}=\frac{1}{308}\)
\(\Rightarrow x+3=308\)
\(\Rightarrow x=305\)
\(\frac{1}{5.8}+\frac{1}{8.11}+\frac{1}{11.14}+...+\frac{1}{x\left(x+3\right)}=\frac{101}{1540}\) (x khác 0; khác -3)
\(\Leftrightarrow\frac{3}{5.8}+\frac{3}{8.11}+\frac{3}{11.14}+...+\frac{3}{x\left(x+3\right)}=\frac{303}{1540}\)
<=>\(\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+...+\frac{1}{x}-\frac{1}{x+3}=\frac{303}{1540}\)
<=>\(\frac{1}{5}-\frac{1}{x+3}=\frac{303}{1540}\)
<=>\(\frac{1}{x+3}=\frac{1}{308}\)
=>x+3=308
<=>x=305 (nhận)
Vậy x=305
1