K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 11 2023

x - 2/3 + 1/2 = x + 7/4 + 5/6

x - x = 7/4 + 5/6 + 2/3 - 1/2

0x = 11/4 (vô lý)

Vậy không tìm được x thỏa mãn đề bài

1: x=3/4-1/2=3/4-2/4=1/4

2: x-1/5=2/11

=>x=2/11+1/5=21/55

3: x-5/6=16/42-8/56

=>x-5/6=8/21-4/28=5/21

=>x=5/21+5/6=15/14

4: x/5=5/6-19/30

=>x/5=25/30-19/30=6/30=1/5

=>x=1

5: =>|x|=1/3+1/4=7/12

=>x=7/12 hoặc x=-7/12

6: x=-1/2+3/4

=>x=3/4-1/2=1/4

11: x-(-6/12)=9/48

=>x+1/2=3/16

=>x=3/16-1/2=-5/16

21 tháng 7 2023

1)x= 1/4

2)x= 2/11+ 1/5

   x= 21/55

3)x - 5/6 = 5/21

   x         = 5/21+5/6

   x         = 15/14

4)x/5 = 5/6 + -19/30

   x:5 = 1/5

   x    = 1/5.5

   x    = 1

5) |x| - 1/4 = 6/18

    |x|           = 6/18 - 1/4

    |x|            =7/12

⇒x= 7/12 hoặc -7/12

6)x = -1/2 +3/4

   x= 1/4

7) x/15 = 3/5 + -2/3

   x:15  = -1/15

  x        = -1/15. 15

  x        = -1

8)11/8 + 13/6 = 85/x  

       85/24      = 85/x

  ⇒      x           = 24

9) x - 7/8 = 13/12

   x          = 13/12 + 7/8

   x          = 47/24

10)x - -6/15 = 4/27  

     x            = 4/27 + (-6/15)

    x             = -34/135

11) -(-6/12)+x = 9/48

                    x= 9/48 - 6/12

                    x = -5/16

12) x - 4/6 = 5/25 + -7/15

      x -4/6  =  -4/15

     x           = -4/15 + 4/6

    x             = 2/5

DT
27 tháng 6 2023

\(\dfrac{x-1}{7}+\dfrac{x-2}{3}+\dfrac{x-3}{5}+\dfrac{x-4}{2}=6\\ =>\left(\dfrac{x-1}{7}-1\right)+\left(\dfrac{x-2}{3}-2\right)+\left(\dfrac{x-3}{5}-1\right)+\left(\dfrac{x-4}{2}-2\right)=0\\ =>\dfrac{x-8}{7}+\dfrac{x-8}{3}+\dfrac{x-8}{5}+\dfrac{x-8}{2}=0\\ =>\left(x-8\right)\left(\dfrac{1}{7}+\dfrac{1}{3}+\dfrac{1}{5}+\dfrac{1}{2}\right)=0\\ =>x-8=0\\ =>x=8\)

27 tháng 6 2023

chắc ko bro :)?

Nguyễn Trà My

Phần a)

\(3\times\left(\frac{1}{2}-x\right)+\frac{1}{3}=\frac{7}{6}-x\)

\(32-3x+13=76-x\)

\(116-3x=76-x\)

\(116-76=3x-x\)

\(46=2x\)

\(x=46\div2\)

\(x=13\)

22 tháng 9 2017

a)  \(3.\left(\frac{1}{2}-x\right)+\frac{1}{3}=\frac{7}{6}-x\)

\(3.\left(\frac{1}{2}-x\right)+x=\frac{7}{6}-\frac{1}{3}\)

\(\Rightarrow\frac{3}{2}-3x+x=\frac{5}{6}\)

\(-3x+x=\frac{5}{6}-\frac{3}{2}\)

\(2x=-\frac{2}{3}\)

\(x=-\frac{2}{3}:2\)

\(x=-\frac{1}{3}\)

26 tháng 8 2017

    1. Phương pháp 1: ( Hình 1)

        Nếu  thì ba điểm A; B; C thẳng hàng.

    2. Phương pháp 2: ( Hình 2)

        Nếu AB // a và AC // a thì ba điểm A; B; C thẳng hàng.

       (Cơ sở của phương pháp này là: tiên đề Ơ – Clit- tiết 8- hình 7)

    3. Phương pháp 3: ( Hình 3)

        Nếu AB  a ; AC  A thì ba điểm A; B; C thẳng hàng.

        ( Cơ sở của phương pháp này là: Có một và chỉ một đường thẳng

        a đi qua điểm O và vuông góc với đường thẳng a cho trước

        - tiết 3 hình học 7)

        Hoặc A; B; C cùng thuộc một đường trung trực của một

        đoạn thẳng .(tiết 3- hình 7)

    4. Phương pháp 4: ( Hình 4)

        Nếu tia OA và tia OB là hai tia phân giác của góc xOy

        thì ba điểm O; A; B thẳng hàng.

        Cơ sở của phương pháp này là:                                                        

        Mỗi góc có một và chỉ một tia phân giác .

     * Hoặc : Hai tia OA và OB cùng nằm trên nửa mặt phẳng bờ chứa tia Ox ,

                   thì ba điểm O, A, B thẳng hàng.

    5. Nếu K là trung điểm BD, K là giao điểm của BD và AC. Nếu K

       Là trung điểm BD  thì K  K thì A, K, C thẳng hàng.

      (Cơ sở của phương pháp này là: Mỗi đoạn thẳng chỉ có một trung điểm)

     

C. Các ví dụ minh họa cho tùng phương pháp:

                                                                Phương pháp 1

    Ví dụ 1. Cho tam giác ABC vuông ở A, M là trung điểm AC. Kẻ tia Cx vuông góc CA

                     (tia Cx và điểm B ở hai nửa mặt phẳng đối nhau bờ AC). Trên tia Cx lấy điểm

                     D sao cho CD = AB.

                     Chứng minh ba điểm B, M, D thẳng hàng.

     Gợi ý: Muốn B, M, D thẳng hàng cần chứng minh

               Do nên cần chứng minh

BÀI GIẢI:

               AMB và CMD có:                                                       

                   AB = DC (gt).

                  

                    MA = MC (M là trung điểm AC)                                              

               Do đó: AMB = CMD (c.g.c). Suy ra:

               Mà   (kề bù) nên .

               Vậy ba điểm B; M; D thẳng hàng.

    Ví dụ 2. Cho tam giác ABC. Trên tia đối của AB lấy điểm D mà  AD = AB, trên tia đối

                     tia AC lấy điểm E mà AE = AC. Gọi M; N lần lượt là các điểm trên BC và ED

                      sao cho CM = EN.

                    Chứng minh ba điểm M; A; N thẳng hàng.

Gợi ý: Chứng minh  từ đó suy ra ba điểm M; A; N thẳng hàng.

BÀI GIẢI (Sơ lược)

          ABC = ADE (c.g.c)

          ACM = AEN (c.g.c)

          Mà  (vì ba điểm E; A; C thẳng hàng) nên

Vậy ba điểm M; A; N thẳng hàng (đpcm)

BÀI TẬP THỰC HÀNH CHO PHƯƠNG PHÁP 1

Bài 1: Cho tam giác ABC. Trên tia đối của tia AB lấy điểm D sao cho AD = AC, trên tia đối

          của tia AC lấy điểm E sao cho AE = AB. Gọi M, N lần lượt là trung điểm của BE và

          CD.

          Chứng minh ba điểm M, A, N thẳng hàng.

Bài 2: Cho tam giác ABC vuông ở A có . Vẽ tia Cx  BC (tia Cx và điểm A ở

          phía ở cùng phía bờ BC), trên tia Cx lấy điểm E sao cho CE = CA. Trên tia đối của tia

          BC lấy điểm F sao cho BF = BA.

          Chứng minh ba điểm E, A, F thẳng hàng.

Bài 3: Cho tam giác ABC cân tại A, điểm D thuộc cạnh AB. Trên tia đối của tia CA lấy điểm

          E sao cho CE = BD. Kẻ DH và EK vuông góc với BC (H và K thuộc đường thẳng BC)

          Gọi M là trung điểm HK.

          Chứng minh ba điểm D, M, E thẳng hàng.

Bài 4: Gọi O là trung điểm của đoạn thẳng AB. Trên hai nửa mặt phẳng đối nhau bờ AB, kẻ

          Hai tia Ax và By sao cho .Trên Ax lấy hai điểm C và E(E nằm giữa A và C),

          trên By lấy hai điểm D và F ( F nằm giữa B và D) sao cho AC = BD, AE = BF.

          Chứng minh ba điểm C, O, D thẳng hàng , ba điểm E, O, F thẳng hàng.

Bài 5.Cho tam giác ABC . Qua A vẽ đường thẳng xy // BC. Từ điểm M trên cạnh BC, vẽ các

          đường thẳng song song AB và AC, các đường thẳng này cắt xy theo thứ tự tại D và E.

          Chứng minh các đường thẳng AM, BD, CE cùng đi qua một điểm.

                                                              PHƯƠNG PHÁP 2

    Ví dụ 1: Cho tam giác ABC. Gọi M, N lần lượt là trung điểm của các cạnh AC, AB. Trên

                  Các đường thẳng BM và CN lần lượt lấy các điểm D và E sao cho M là trung  

                 điểm BD và N là trung điểm EC.

                  Chứng minh ba điểm E, A, D thẳng hàng.

Hướng dẫn: Xử dụng phương pháp 2                                            

                  Ta chứng minh AD // BC và AE // BC.

BÀI GIẢI.

                 BMC và DMA có:

                   MC = MA (do M là trung điểm AC)

                    (hai góc đối đỉnh)

                   MB = MD (do M là trung điểm BD)

                  Vậy: BMC = DMA (c.g.c)

                   Suy ra: , hai góc này ở vị trí so le trong nên BC // AD (1)

                   Chứng minh tương tự : BC // AE (2)

                   Điểm A ở ngoài BC có một và chỉ một đường thẳng song song BC nên từ (1)

                   và (2) và theo Tiên đề Ơ-Clit suy ra ba điểm E, A, D thẳng hàng. 

   Ví dụ 2: Cho hai đoạn thẳng  AC và BD cắt nhau tai trung điểm O của mỗi đoạn. Trên tia

                 AB lấy lấy điểm M sao cho B là trung điểm AM, trên tia AD lấy điểm N sao cho

                 D là trung điểm AN. 

Bài 1: 

a) Ta có: \(\dfrac{17}{6}-x\left(x-\dfrac{7}{6}\right)=\dfrac{7}{4}\)

\(\Leftrightarrow\dfrac{17}{6}-x^2+\dfrac{7}{6}x-\dfrac{7}{4}=0\)

\(\Leftrightarrow-x^2+\dfrac{7}{6}x+\dfrac{13}{12}=0\)

\(\Leftrightarrow-12x^2+14x+13=0\)

\(\Delta=14^2-4\cdot\left(-12\right)\cdot13=196+624=820\)

Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}x_1=\dfrac{14-2\sqrt{205}}{-24}=\dfrac{-7+\sqrt{205}}{12}\\x_2=\dfrac{14+2\sqrt{2015}}{-24}=\dfrac{-7-\sqrt{205}}{12}\end{matrix}\right.\)

b) Ta có: \(\dfrac{3}{35}-\left(\dfrac{3}{5}-x\right)=\dfrac{2}{7}\)

\(\Leftrightarrow\dfrac{3}{5}-x=\dfrac{3}{35}-\dfrac{10}{35}=\dfrac{-7}{35}=\dfrac{-1}{5}\)

hay \(x=\dfrac{3}{5}-\dfrac{-1}{5}=\dfrac{3}{5}+\dfrac{1}{5}=\dfrac{4}{5}\)

12 tháng 7 2021

ai giúp mik vs

22 tháng 6 2016

a, x + 1/3 = 3/4

- > x = 3/4 - 1/3 = 5/12

b, x - 2/5 = 5/4

-> x = 5/4 + 2/5 = 33/20

c, -x - 2/3 = 6/7

-> -x = 6/7 + 2/3 = 32/21

-> x = -32/21

d, 4/7 - x = 1/3

x = 4/7 - 1/3 = 5/21

22 tháng 6 2016

a) x+1/3= 3/4 

   x= 3/4 - 1/3

   x= 5/12

b) x-2/5 = 5/4 

    x= 5/4 + 2/5 

    x = 33 / 20

c) -x - 2/3 = 6/7 

    -x = 6/7 + 2/3 

    -x = 32/21 => x = -32/21

d) 4/7 -x = 1/3 

    x= 4/7 -1/3

   x = 5/21

7 tháng 10 2021

Bài 1:

a) \(=\dfrac{8}{15}\left(\dfrac{7}{13}+\dfrac{6}{13}\right)=\dfrac{8}{15}.1=\dfrac{8}{15}\)

b) \(=\dfrac{3.3-7-2.4}{12}=-\dfrac{6}{12}=-\dfrac{1}{2}\)

Bài 2:

 \(\dfrac{x}{2,7}=-\dfrac{2}{3,6}\Rightarrow x=\dfrac{\left(-2\right).2,7}{3,6}\Rightarrow x=-\dfrac{3}{2}\)

Bài 3:

\(\dfrac{x}{2}=\dfrac{y}{5}=\dfrac{x+y}{2+5}=-\dfrac{21}{7}=-3\)

\(\Rightarrow\left\{{}\begin{matrix}x=\left(-3\right).2=-6\\y=\left(-3\right).5=-10\end{matrix}\right.\)

 

a)x=\(\frac{5}{12}\)

b)x=\(\frac{39}{35}\)

c)-x=-\(\frac{4}{21}\)

x=\(\frac{4}{21}\)