K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 6 2021

a) 3x(4x-3)-2x(5-6x)=0

\(\Leftrightarrow12x^2-9x-10x+12x^2=0\)

\(\Leftrightarrow24x^2-19x=0\)

\(\Leftrightarrow x\left(24x-19\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\24x-19=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\24x=19\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{19}{24}\end{matrix}\right.\)

Vậy x=0 hoặc x=\(\dfrac{19}{24}\)

30 tháng 6 2021

b) 5(2x-3)+4x(x-2)+2x(3-2x)=0

\(\Leftrightarrow\)10x-15+4x2-8x+6x-4x2=0

\(\Leftrightarrow8x-15=0\)

\(\Leftrightarrow8x=15\)

\(\Leftrightarrow x=\dfrac{15}{8}\)

vậy x=\(\dfrac{15}{8}\)

a: Ta có: \(3\left(2x-3\right)+2\left(2-x\right)=-3\)

\(\Leftrightarrow6x-9+4-2x=-3\)

\(\Leftrightarrow4x=2\)

hay \(x=\dfrac{1}{2}\)

1 tháng 10 2021

giải phần còn lại giúp mình được ko?

c: =>(x-1)(x+1)=0

hay \(x\in\left\{1;-1\right\}\)

2 tháng 1 2022

plss

17 tháng 10 2021

a: \(\left(2x-1\right)^2-3\left(x-1\right)\left(x+2\right)-\left(x-3\right)^2\)

\(=4x^2-4x+1-x^2+6x-9-3\left(x^2+x-2\right)\)

\(=3x^2+2x-8-3x^2-3x+6\)

=-x+2

b: \(\left(x-2\right)\left(2x-1\right)-3\left(x+1\right)^2-4x\left(x+2\right)\)

\(=2x^2-x-4x+2-3x^2-6x-3-4x^2-8x\)

\(=-5x^2-19x-1\)

AH
Akai Haruma
Giáo viên
23 tháng 8 2021

Lời giải:
a.

a. $(x-1)(x+2)-(x-3)(x+1)=5x-3$

$\Leftrightarrow (x^2+x-2)-(x^2-2x-3)=5x-3$

$\Leftrightarrow 3x+1=5x-3$

$\Leftrightarrow 4=2x$

$\Leftrightarrow x=2$

b.

$(2x-1)(x+3)-(x-2)(x+3)=3x+1$

$\Leftrightarrow (2x^2+5x-3)-(x^2-4)=3x+1$

$\Leftrightarrow x^2+5x+1=3x+1$

$\Leftrightarrow x^2+2x=0$

$\Leftrightarrow x(x+2)=0$

$\Leftrightarrow x=0$ hoặc $x=-2$

c.

$x^2(x-1)-x(x-1)(x+1)=0$

$\Leftrightarrow x^2(x-1)-(x^2+x)(x-1)=0$

$\Leftrightarrow (x-1)[x^2-(x^2+x)]=0$

$\Leftrightarrow (x-1)(-x)=0$

$\Leftrightarrow x-1=0$ hoặc $-x=0$

$\Leftrightarrow x=1$ hoặc $x=0$

d.

$4x(x-5)-(2x-3)(2x+3)=9$

$\Leftrightarrow 4x^2-20x-(4x^2-9)=9$

$\Leftrightarrow -20x=0$

$\Leftrightarrow x=0$

a: Ta có: \(\left(x-1\right)\left(x+2\right)-\left(x-3\right)\left(x+1\right)=5x-3\)

\(\Leftrightarrow x^2+2x-x-2-x^2-x+3x+3-5x+3=0\)

\(\Leftrightarrow-2x+4=0\)

\(\Leftrightarrow2x=4\)

hay x=2

b: Ta có: \(\left(2x-1\right)\left(x+3\right)-\left(x-2\right)\left(x+2\right)=3x+1\)

\(\Leftrightarrow2x^2+6x-x-3-x^2+4-3x-1=0\)

\(\Leftrightarrow x^2+2x=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)

c: Ta có: \(x^2\left(x-1\right)-x\left(x-1\right)\left(x+1\right)=0\)

\(\Leftrightarrow x\left(x-1\right)\left(x-x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)

d: Ta có: \(4x\left(x-5\right)-\left(2x-3\right)\left(2x+3\right)=9\)

\(\Leftrightarrow4x^2-20x-4x^2+9=9\)

hay x=0

f: Ta có: \(16x^2-9\left(x+1\right)^2=0\)

\(\Leftrightarrow\left(4x-3x-3\right)\left(4x+3x+3\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(7x+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-\dfrac{3}{7}\end{matrix}\right.\)

16 tháng 9 2021

a) \(\left(x-1\right)^3\)

\(=x^3-3x^2+3x-1\)

b) \(\left(2x-3y\right)^3\)

\(=\left(2x\right)^3-3\left(2x\right)^23y+3.2x\left(3y\right)^3+\left(3y\right)^3\)

\(=8x^3-36x^2y+54xy^2-27y^3\)

 

Bài 3: 

a: Ta có: \(\left(x-2\right)^3-x^2\left(x-6\right)=5\)

\(\Leftrightarrow x^3-6x^2+12x-8-x^3+6x^2=5\)

\(\Leftrightarrow12x=13\)

hay \(x=\dfrac{13}{12}\)

b: Ta có: \(\left(x-1\right)\left(x^2+x+1\right)-x\left(x+2\right)\left(x-2\right)=4\)

\(\Leftrightarrow x^3-1-x^3+4x=4\)

\(\Leftrightarrow4x=5\)

hay \(x=\dfrac{5}{4}\)

8 tháng 9 2021

\(a,2\left(x^3-1\right)-2x^2\left(x+2x^4\right)+x\left(4x^5+4\right)=6\\ \Leftrightarrow2x^3-2-2x^3-4x^6+4x^6+4x-6=0\\ \Leftrightarrow4x-8=0\\ \Leftrightarrow x=2\\ b,\left(2x\right)^2\left(4x-2\right)-\left(x^3-8x^3\right)=15\\ \Leftrightarrow4x^2\left(4x-2\right)+7x^3-15=0\\ \Leftrightarrow16x^3-8x^2+7x^3-15=0\\ \Leftrightarrow23x^3-8x^2-15=0\\ \Leftrightarrow23x^3-23x^2+15x^2-15x+15x-15=0\\ \Leftrightarrow\left(x-1\right)\left(23x^2+15x-15\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\x\in\varnothing\left(23x^2+15x-15>0\right)\end{matrix}\right.\)

Bài 1: 

a: Ta có: \(2\left(x^3-1\right)-2x^2\left(2x^4+x\right)+x\left(4x^5+4\right)=6\)

\(\Leftrightarrow2x^3-2-4x^6-2x^3+4x^6+4x=6\)

\(\Leftrightarrow4x=8\)

hay x=2

b: Ta có: \(\left(2x\right)^2\cdot\left(4x-2\right)-\left(x^3-8x^3\right)=15\)

\(\Leftrightarrow4x^2\left(4x-2\right)-x^3+8x^3=15\)

\(\Leftrightarrow16x^3-8x^2+7x^3=15\)

\(\Leftrightarrow23x^3-8x^2-15=0\)

\(\Leftrightarrow23x^3-23x^2+15x^2-15=0\)

\(\Leftrightarrow23x^2\left(x-1\right)+15\left(x-1\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(23X^2+15x+15\right)=0\)

\(\Leftrightarrow x-1=0\)

hay x=1

31 tháng 7 2023

p) \(\left(9-x\right)\left(x^2+2x-3\right)\)

\(=9\left(x^2+2x-3\right)-x\left(x^2+2x-3\right)\)

\(=9x^2+18x-27-x^3-2x^2+3x\)

\(=-x^3+7x^2+21x-27\)

n) \(\left(-x+3\right)\left(x^2+x+1\right)\)

\(=-x\left(x^2+x+1\right)+3\left(x^2+x+1\right)\)

\(=-x^3-x^2-x+3x^2+3x+3\)

\(=-x^2+2x^2+2x+3\)

o) \(\left(-6x+\dfrac{1}{2}\right)\left(x^2-4x+2\right)\)

\(=-6x\left(x^2-4x+2\right)+\dfrac{1}{2}\left(x^2-4x+2\right)\)

\(=-6x^3+24x^2-12x+\dfrac{1}{2}x^2-2x+1\)

\(=-6x^3+\dfrac{49}{2}x^2-14x+1\)

q) \(\left(6x+1\right)\left(x^2-2x-3\right)\)

\(=6x\left(x^2-2x-3\right)+\left(x^2-2x-3\right)\)

\(=6x^3-12x^2-18x+x^2-2x-3\)

\(=6x^3-11x^2-20x-3\)

r) \(\left(2x+1\right)\left(-x^2-3x+1\right)\)

\(=2x\left(-x^2-3x+1\right)+\left(-x^2-3x+1\right)\)

\(=-2x^3-6x^2+2x-x^2-3x+1\)

\(=-2x^3-7x^2-x+1\)

u) \(\left(2x-3\right)\left(-x^2+x+6\right)\)

\(=2x\left(-x^2+x+6\right)-3\left(-x^2+x+6\right)\)

\(=-2x^3+2x^2+12x+3x^2-3x-18\)

\(=-2x^3+5x^2+9x-18\)

s) \(\left(-4x+5\right)\left(x^2+3x-2\right)\)

\(=-4x\left(x^2+3x-2\right)+5\left(x^2+3x-2\right)\)

\(=-4x^3-12x^2+8x+5x^2+15x-10\)

\(=-4x^3-7x^2+23x-10\)

v) \(\left(-\dfrac{1}{2}x+3\right)\left(2x+6-4x^3\right)\)

\(=-\dfrac{1}{2}x\left(2x+6-4x^3\right)+3\left(2x+6-4x^3\right)\)

\(=-x^2-3+2x^4+6x+18-12x^3\)

\(=2x^4-12x^3-x^2+6x+15\)

p: (-x+9)(x^2+2x-3)

=-x^3-2x^2+3x+9x^2+18x-27

=-x^3+7x^2+21x-27

n: (-x+3)(x^2+x+1)

=-x^3-x^2-x+3x^2+3x+3

=-x^3+2x^2+2x+3

o: (-6x+1/2)(x^2-4x+2)

=-6x^3+24x^2-12x+1/2x^2-2x+1

=-64x^3+49/2x^2-14x+1

q: (6x+1)(x^2-2x-3)

=6x^3-12x^2-18x+x^2-2x-3

=6x^3-11x^2-20x-3

r: (2x+1)(-x^2-3x+1)

=-2x^3-6x^2+2x-x^2-3x+1

=-2x^3-7x^2-x+1

u: =-2x^3+2x^2+12x+3x^2-3x-18

=-2x^3+5x^2+9x-18

s: =-4x^3-12x^2+8x+5x^2+15x-10

=-4x^3-7x^2+23x-10

1: \(=6x^2+2x-15x-5-x^2+6x-9+4x^2+20x+25-27x^3-27x^2-9x-1\)

=-27x^3-18x^2+4x+10

2: =4x^2-1-6x^2-9x+4x+6-x^3+3x^2-3x+1+8x^3+36x^2+54x+27

=7x^3+37x^2+46x+33

5:

\(=25x^2-1-x^3-27-4x^2-16x-16-9x^2+24x-16+\left(2x-5\right)^3\)

\(=8x^3-60x^2+150-125+12x^2-x^3+8x-60\)

=7x^3-48x^2+8x-35