Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a) \(3x^2\left(2x^3-x+5\right)-6x^5-3x^3+10x^2\)
\(=6x^5-3x^3+10x^2-6x^5-3x^3+10x^2\)
\(=10x^2+10x^2\)
\(=20x^2\)
b) \(-2x\left(x^3-3x^2-x+11\right)-2x^4+3x^3+2x^2-22x\)
\(=-2x^4+6x^3+2x^2-22x-2x^4+3x^3+2x^2-22x\)
\(=-4x^4+9x^3+4x^2-44x\)
Bài 4:
a) \(\dfrac{4}{3}+\left(1,25-x\right)=2,25\)
\(1,25-x=2,25-\dfrac{4}{3}=\dfrac{9}{4}-\dfrac{4}{3}\)
\(1,25-x=\dfrac{11}{12}\)
\(x=1,25-\dfrac{11}{12}=\dfrac{5}{4}-\dfrac{11}{12}\)
\(x=\dfrac{1}{3}\)
b) \(\dfrac{17}{6}-\left(x-\dfrac{7}{6}\right)=\dfrac{7}{4}\)
\(x-\dfrac{7}{6}=\dfrac{17}{6}-\dfrac{7}{4}=\dfrac{34}{12}-\dfrac{21}{12}\)
\(x-\dfrac{7}{6}=\dfrac{13}{12}\)
\(x=\dfrac{13}{12}+\dfrac{7}{6}=\dfrac{13}{12}+\dfrac{14}{12}\)
\(x=\dfrac{27}{12}=\dfrac{9}{4}\)
c) \(4-\left(2x+1\right)=3-\dfrac{1}{3}=\dfrac{9}{3}-\dfrac{1}{3}\)
\(4-\left(2x+1\right)=\dfrac{8}{3}\)
\(2x+1=\dfrac{8}{3}+4=\dfrac{8}{3}+\dfrac{12}{3}\)
\(2x+1=\dfrac{20}{3}\)
\(2x=\dfrac{20}{3}-1=\dfrac{20}{3}-\dfrac{3}{3}\)
\(2x=\dfrac{17}{3}\)
\(x=\dfrac{17}{3}.\dfrac{1}{2}=\dfrac{17}{6}\)
Bài 15:
a) \(\left(\dfrac{-2}{3}\right)^9:x=\dfrac{-2}{3}\)
\(x=\left(\dfrac{-2}{3}\right)^9:\dfrac{-2}{3}=\left(\dfrac{-2}{3}\right)^{9-1}\)
\(=>x=\left(\dfrac{-2}{3}\right)^8\)
b) \(x:\left(\dfrac{4}{9}\right)^5=\left(\dfrac{4}{9}\right)^4\)
\(x=\left(\dfrac{4}{9}\right)^4.\left(\dfrac{4}{9}\right)^5=\left(\dfrac{4}{9}\right)^{4+5}\)
\(=>x=\left(\dfrac{4}{9}\right)^9\)
c) \(\left(x+4\right)^3=-125\)
\(\left(x+4\right)^3=\left(-5\right)^3\)
\(=>x+4=-5\)
\(x=-5-4\)
\(=>x=-9\)
d) \(\left(10-5x\right)^3=64\)
\(\left(10-5x\right)^3=4^3\)
\(=>10-5x=4\)
\(5x=10-4\)
\(5x=6\)
\(=>x=\dfrac{6}{5}\)
e) \(\left(4x+5\right)^2=81\)
\(\Leftrightarrow\left[{}\begin{matrix}\left(4x+5\right)^2=\left(-9\right)^2\\\left(4x+5\right)^2=9^2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}4x+5=-9\\4x+5=9\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}4x=-14\\4x=4\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-14}{4}\\x=1\end{matrix}\right.\)
Bài 16:
a) \(4-1\dfrac{2}{5}-\dfrac{8}{3}\)
\(=4-\dfrac{7}{5}-\dfrac{8}{3}\)
\(=\dfrac{60-21-40}{15}=\dfrac{-1}{15}\)
b) \(-0,6-\dfrac{-4}{9}-\dfrac{16}{15}\)
\(=\dfrac{-3}{5}+\dfrac{4}{9}-\dfrac{16}{15}\)
\(=\dfrac{\left(-27\right)+20-48}{45}=\dfrac{-55}{45}=\dfrac{-11}{9}\)
c) \(-\dfrac{15}{4}.\left(\dfrac{-7}{15}\right).\left(-2\dfrac{2}{5}\right)\)
\(=\dfrac{7}{4}.\dfrac{-12}{5}\)
\(=\dfrac{-21}{5}\)
\(#Wendy.Dang\)
a) \(\dfrac{1}{2}+\dfrac{2}{3}x=\dfrac{1}{4}\\ \Rightarrow\dfrac{2}{3}x=-\dfrac{1}{4}\\ \Rightarrow x=-\dfrac{3}{8}\)
b) \(2\dfrac{2}{3}:x=1\dfrac{7}{9}:0,02\\ \Rightarrow2\dfrac{2}{3}:x=\dfrac{800}{9}\\ \Rightarrow x=\dfrac{3}{100}\)
c) \(x^x-x+1=1\\ \Rightarrow x^x-x=0\\ \Rightarrow x^x=x\\ \Rightarrow x=1\)
d) \(5-\left|3x-1\right|=3\\ \Rightarrow\left|3x-1\right|=2\\ \Rightarrow\left[{}\begin{matrix}3x-1=-2\\3x-1=2\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=-\dfrac{1}{3}\\x=1\end{matrix}\right.\)
\(a,\Rightarrow\left[{}\begin{matrix}x=18\\x=-18\end{matrix}\right.\\ b,\Rightarrow\left[{}\begin{matrix}x=\dfrac{3}{5}\\x=-\dfrac{3}{5}\end{matrix}\right.\\ c,\Rightarrow x:\left(-\dfrac{1}{60}\right)=2\Rightarrow-60.x=2\Rightarrow x=-\dfrac{2}{60}=-\dfrac{1}{30}\)
a: =>x*7/4+3/2=-4/5
=>x*7/4=-4/5-3/2=-8/10-15/10=-23/10
=>x=-23/10:7/4=-23/10*4/7=-92/70=-46/35
b: =>x*9/20=1/7+1/8=15/56
=>x=15/56:9/20=15/56*20/9=25/42
c: |x|=3,5
=>x=3,5 hoặc x=-3,5
d: |x|=-2,7
=>x thuộc rỗng
e: =>|x-1|=3-0,73=2,27
=>x-1=2,27 hoặc x-1=-2,27
=>x=-1,27 hoặc x=3,27
f: \(\Leftrightarrow7\cdot11x+11=0\)
=>77x=-11
=>x=-1/7
l: =>|x+3/4|=-2+5=3
=>x+3/4=3 hoặc x+3/4=-3
=>x=-15/4 hoặc x=9/4
a: \(\Leftrightarrow\left(x-1\right)^2=81\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=9\\x-1=-9\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=10\\x=-8\end{matrix}\right.\)
a) \(\dfrac{x.2}{-15}=\dfrac{-5}{3}\)
\(\dfrac{x.2}{-15}=\dfrac{25}{-15}\)
x.2=25
x=12,5
b) \(\dfrac{x-1}{-12}=\dfrac{-3}{x-1}\)
(x-1)2=-3.(-12)
(x-1)2=36
⇒(x-1)2\(\Rightarrow\left[{}\begin{matrix}x-1=6\\x-1=-6\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=7\\x=-5\end{matrix}\right.\)
a.\(\dfrac{1}{3}\) + x = \(\dfrac{5}{6}\)
x = \(\dfrac{5}{6}\) - \(\dfrac{1}{3}\)
x = \(\dfrac{1}{2}\)
b. | x-1| - \(\dfrac{2}{5}\) = \(\dfrac{11}{10}\)
| x-1| = \(\dfrac{11}{10}\) + \(\dfrac{2}{5}\)
|x-1| = \(\dfrac{3}{2}\)
\(\left[{}\begin{matrix}x-1=\dfrac{3}{2}\\x-1=-\dfrac{3}{2}\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=\dfrac{3}{2}+1\\x=-\dfrac{3}{2}+1\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=-\dfrac{1}{2}\end{matrix}\right.\)
c, \(\dfrac{1}{3}\) + \(\dfrac{2}{3}\) ( \(\dfrac{x}{2}\) + 3) = 1
\(\dfrac{2}{3}\) (\(\dfrac{x}{2}\) + 3) = 1 - \(\dfrac{1}{3}\)
\(\dfrac{2}{3}\) ( \(\dfrac{x}{2}\) + 3) = \(\dfrac{2}{3}\)
\(\dfrac{x}{2}\) + 3 = 1
\(\dfrac{x}{2}\) = 1 - 3
\(\dfrac{x}{2}\) = -2
\(x\) = -4
d, \(\dfrac{x+2}{3}\) = \(\dfrac{27}{x+2}\)
(x+2)2 = 27.3
(x+2) =92
\(\left[{}\begin{matrix}x+2=9\\x+2=-9\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=7\\x=-11\end{matrix}\right.\)
a) Ta có: \(\left(2x-3\right)-\left(x-5\right)=\left(x+2\right)-\left(x-1\right)\)
\(\Leftrightarrow2x-3-x+5=x+2-x+1\)
\(\Leftrightarrow x+2=3\)
hay x=1
Vậy: x=1
b) Ta có: \(2\left(x-1\right)-5\left(x+2\right)=-10\)
\(\Leftrightarrow2x-2-5x-10=-10\)
\(\Leftrightarrow-3x=-10+10+2=2\)
hay \(x=-\dfrac{2}{3}\)
Vậy: \(x=-\dfrac{2}{3}\)
a, (2x - 3) - (x - 5) = (x + 2) - (x - 1)
2x - 3 - x + 5 = x + 2 - x + 1
(2x - x) + (-3 + 5) = (x - x) + (2 + 1)
x + 2 = 3
x = 1
a. / x - 3 / - 6 = 2x
=> / x+3 / = 2x + 6
Vì /x+3/ > 0 với mọi x
mà /x+3/ = 2x+6
=> 2x+6>0 với mọi x
=> 2x > - 6
=> x > - 3
Nếu x < 3
=> / x - 3 / = 3 - x = 2x + 6
=> 3x - 3
=> x = -1 ( 3 > - 1 > - 3 ) ( thỏa mãn)
Nếu x > 3
=> / x - 3 / = x - 3 = 2 x + 6
=> - x = 9
=> x = - 9 ( - 9 < - 3 ) ( không thỏa mãn điều kiện trên )
Vậy x = -1
c. / x2 - 1 / = ( x - 1 ) ( x + 1 )
=> / x2 - 1 / = x2 - 1
=> x2 - 1 > 0
=> x2 > 1
=> x > 1 và x< - 1
b. / x -2/ + /x - 4/ = 5
Nếu x < 2
=> /x-2/ + /x-4/ = 2 - x + 4 - x = 5
=> 6 - 2x = 5
=> 2x = 6 - 5 = 1
=> x = 1/2 < 2 ( thỏa mãn )
Nếu 2 < x < 4
=> /x-2/ + /x-4/ = x-2 + 4-x = 5
=> 2 = 5 ( vô lí )
loại trường hợp này
Nếu x > 4
=> /x-2/ + /x-4/ = x-2+x-4 = 5
=> 2x - 6 = 5
=> 2x = 11
=> x = 11/2 > 4 ( thỏa mãn )
Vậy x = 11/2 hoặc 1/2