Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\dfrac{x.2}{-15}=\dfrac{-5}{3}\)
\(\dfrac{x.2}{-15}=\dfrac{25}{-15}\)
x.2=25
x=12,5
b) \(\dfrac{x-1}{-12}=\dfrac{-3}{x-1}\)
(x-1)2=-3.(-12)
(x-1)2=36
⇒(x-1)2\(\Rightarrow\left[{}\begin{matrix}x-1=6\\x-1=-6\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=7\\x=-5\end{matrix}\right.\)
a) `(x-8)(x^3+8)=0`
`<=>(x-8)(x+2)(x^2-2x+4)=0`
`<=>` \(\left[ \begin{array}{l}x=8\\x=-2\end{array} \right.\) (Vì `x^2-2x+4 \ne 0 forall x)`
Vậy `A={8;-2}`.
b) `(4x-3)-(x+5)=3(10-x)`
`,=>4x-3-x-5=30-3x`
`<=>3x-8=30-3x`
`<=>6x=38`
`<=>x=19/3`
Vậy `S={19/3}`.
Lời giải:
$x+\frac{2}{-15}=\frac{-5}{3}$
$x=\frac{-5}{3}-\frac{2}{-15}=\frac{-5}{3}+\frac{2}{15}$
$x=\frac{-23}{15}$
a: =>2^x*4-2^x*3=32
=>2^x=32
=>x=5
b: =>(4x-3)^2-(4x-3)=0
=>(4x-3)(4x-3-1)=0
=>(4x-3)(4x-4)=0
=>x=3/4 hoặc x=1
c: =>7^2x+7^2x*7^3=344
=>7^2x=1
=>2x=0
=>x=0
d: =>(7x-3)^2012-(7x-3)^2010=0
=>(7x-3)^2010*[(7x-3)^2-1]=0
=>(7x-3)^2010*(7x-4)(7x-2)=0
=>x=2/7; x=4/7; x=3/7
e: =>(4x^2-3)^3=-8
=>4x^2-3=-2
=>4x^2=1
=>x^2=1/4
=>x=1/2 hoặc x=-1/2
a) 2x(22 - 3) = 32
2x.1=25
=> x = 5
b) (4x - 3)2 = 4x -3
=> (4x - 3)2 - (4x - 3) = 0
(4x-3)[(4x - 3) - 1] = 0
(4x-3)(4x - 4)=0
\(\Rightarrow\left[{}\begin{matrix}4x-3=0\\4x-4=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\dfrac{3}{4}\\x=1\end{matrix}\right.\)
c) 72x + 72x+3 = 344
=> 72x(1 + 73) =344
72x . 344 = 344
=> 2x = 0 => x = 0
d) (7x - 3)2012 = (3 - 7x)2010
=> (7x - 3)2012 - (7x - 3)2010 = 0
(7x - 3)2010 [(7x - 3)2 - 1] = 0
\(\Rightarrow\left[{}\begin{matrix}7x-3=0\\\left(7x-3\right)^2=1\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\dfrac{3}{7}\\7x=4\\7x=2\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=\dfrac{3}{7}\\x=\dfrac{4}{7}\\x=\dfrac{2}{7}\end{matrix}\right.\)
e) (4x2 - 3)3 + 8 = 0
(4x2 - 3)3 = (-2)3
=> 4x2 - 3 = -2
4x2 = 1
x2 = 1/4
=> \(x=\pm\dfrac{1}{2}\)
a.\(\dfrac{1}{3}\) + x = \(\dfrac{5}{6}\)
x = \(\dfrac{5}{6}\) - \(\dfrac{1}{3}\)
x = \(\dfrac{1}{2}\)
b. | x-1| - \(\dfrac{2}{5}\) = \(\dfrac{11}{10}\)
| x-1| = \(\dfrac{11}{10}\) + \(\dfrac{2}{5}\)
|x-1| = \(\dfrac{3}{2}\)
\(\left[{}\begin{matrix}x-1=\dfrac{3}{2}\\x-1=-\dfrac{3}{2}\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=\dfrac{3}{2}+1\\x=-\dfrac{3}{2}+1\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=-\dfrac{1}{2}\end{matrix}\right.\)
c, \(\dfrac{1}{3}\) + \(\dfrac{2}{3}\) ( \(\dfrac{x}{2}\) + 3) = 1
\(\dfrac{2}{3}\) (\(\dfrac{x}{2}\) + 3) = 1 - \(\dfrac{1}{3}\)
\(\dfrac{2}{3}\) ( \(\dfrac{x}{2}\) + 3) = \(\dfrac{2}{3}\)
\(\dfrac{x}{2}\) + 3 = 1
\(\dfrac{x}{2}\) = 1 - 3
\(\dfrac{x}{2}\) = -2
\(x\) = -4
d, \(\dfrac{x+2}{3}\) = \(\dfrac{27}{x+2}\)
(x+2)2 = 27.3
(x+2) =92
\(\left[{}\begin{matrix}x+2=9\\x+2=-9\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=7\\x=-11\end{matrix}\right.\)
a) \(1=\left(2x+0,5\right)^{600}\)
\(\Rightarrow1^{600}=\left(2x+0,5\right)^{600}\)
\(\Rightarrow\left[{}\begin{matrix}2x+0,5=1\\2x+0,5=-1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2x=0,5\\2x=-1,5\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0,25\\x=-0,75\end{matrix}\right.\)
b) \(\left(x-0,125\right)^2=0,25\)
\(\Rightarrow\left(x-0,125\right)^2=0,5^2\)
\(\Rightarrow\left[{}\begin{matrix}x-0,125=0,5\\x-0,125=-0,5\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0,625\\x=-0,375\end{matrix}\right.\)
c) \(\left(x-3\right)^{11}=\left(x-3\right)^{41}\)
\(\Rightarrow\left(x-3\right)^{11}-\left(x-3\right)^{41}=0\)
\(\Rightarrow\left(x-3\right)^{11}\left[1-\left(x-3\right)^{30}\right]=0\)
\(\Rightarrow\left[{}\begin{matrix}\left(x-3\right)^{11}=0\\\left(x-3\right)^{30}=1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x-3=0\\x-3=1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=3\\x=4\end{matrix}\right.\)
`@` `\text {Ans}`
`\downarrow`
`a)`
`1 = (2x + 0,5)^600`
`=> (2x+0,5)^600 = (+-1)^600`
`=> \text {TH1: } 2x + 0,5 = 1`
`=> 2x = 1 - 0,5`
`=> 2x = 0,5`
`=> x = 0,5 \div 2`
`=> x = 0,25`
`\text {TH2: } 2x + 0,5 = -1`
`=> 2x = -1 - 0,5`
`=> 2x = -1,5`
`=> x = -1,5 \div 2`
`=> x = -0,75`
Vậy, `x \in {-0,75; 0,25}.`
`b)`
`(x - 0,125)^2 = 0,25`
`=> (x - 0,125)^2 = (+-0,5)^2`
`=> `\(\left[{}\begin{matrix}x-0,125=0,5\\x-0,125=-0,5\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}x=0,5+0,125\\x=-0,5+0,125\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}x=0,625\\x=-0,375\end{matrix}\right.\)
Vậy, `x \in {-0,375; 0,625}.`
`c)`
`(x - 3)^11 = (x - 3)^41`
`=> (x - 3)^11 - (x - 3)^41 = 0`
`=> (x - 3)^11 * [ 1 - (x - 3)^30] = 0`
`=>`\(\left[{}\begin{matrix}\left(x-3\right)^{11}=0\\1-\left(x-3\right)^{30}=0\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}x-3=0\\\left(x-3\right)^{30}=1\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}x=3\\x-3=1\end{matrix}\right.\)
`=>`\(\left[{}\begin{matrix}x=3\\x=4\end{matrix}\right.\)
Vậy, `x \in {3; 4}.`
a) \(\dfrac{3,5}{15}=\dfrac{-2}{x}\)
\(\Rightarrow x=\dfrac{15.-2}{3,5}\)
\(\Rightarrow x=-8,57\)
b) \(2\left(3x-2\right)-3\left(x-2\right)-=-1\)
\(\Rightarrow6x-4-3x+6=-1\)
\(\Rightarrow6x-3x=-1+4-6\)
\(\Rightarrow3x=-3\)
\(\Rightarrow x=-\dfrac{3}{3}=-1\)
a) \(\dfrac{1}{2}+\dfrac{2}{3}x=\dfrac{1}{4}\\ \Rightarrow\dfrac{2}{3}x=-\dfrac{1}{4}\\ \Rightarrow x=-\dfrac{3}{8}\)
b) \(2\dfrac{2}{3}:x=1\dfrac{7}{9}:0,02\\ \Rightarrow2\dfrac{2}{3}:x=\dfrac{800}{9}\\ \Rightarrow x=\dfrac{3}{100}\)
c) \(x^x-x+1=1\\ \Rightarrow x^x-x=0\\ \Rightarrow x^x=x\\ \Rightarrow x=1\)
d) \(5-\left|3x-1\right|=3\\ \Rightarrow\left|3x-1\right|=2\\ \Rightarrow\left[{}\begin{matrix}3x-1=-2\\3x-1=2\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=-\dfrac{1}{3}\\x=1\end{matrix}\right.\)
\(\text{a) Ta co }\) \(4^{x+3}-3.4^{x+1}=13.4^{11}\)
\(\Rightarrow\) \(4^{x+1}\left(16-3\right)=13.4^{11}\)
\(\Rightarrow4^{x+1}.13=13.4^{11}\)
\(\Rightarrow4^{x+1}=4^{11}\)
\(\Rightarrow x+1=11\)
\(\Rightarrow\text{x=10}\)
a)
\(4^{x+3}-3.4^{x+1}=13.4^{11}\)
<=> \(4^{x+1}\left(16-3\right)=13.4^{11}\)
<=> \(4^{x+1}.13=13.4^{11}\)
<=> \(4^{x+1}=4^{11}\)
<=> \(x+1=11\)
<=> x=10