Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left(x+2\right)^2-\left(3x-7\right)^2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+2=3x-7\\x+2=-3x+7\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3x=-2-7\\x+3x=-2+7\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}-2x=-9\\4x=5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{9}{2}\\x=\dfrac{5}{4}\end{matrix}\right.\)
Mấy câu kia tương tự.
a) \(\left(x+2\right)^2-\left(3x-7\right)^2=0\)
\(\Leftrightarrow\left(x+2-3x+7\right)\left(x+2+3x-7\right)=0\)
\(\Leftrightarrow\left(-2x+9\right)\left(4x-5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}-2x+9=0\\4x-5=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}-2x=-9\\4x=5\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-9}{-2}=\dfrac{9}{2}\\x=\dfrac{5}{4}\end{matrix}\right.\)
Vậy \(x=\dfrac{9}{2}\) hoặc \(x=\dfrac{5}{4}\)
b) lộn đề à
c) \(25\left(x-3\right)^2-49\left(2x+1\right)^2=0\)
\(\Leftrightarrow5^2\left(x-3\right)^2-7^2\left(2x+1\right)^2=0\)
\(\Leftrightarrow\left[5\left(x-3\right)\right]^2-\left[7\left(2x+1\right)\right]^2=0\)
\(\Leftrightarrow\left(5x-15\right)^2-\left(14x+7\right)^2=0\)
\(\Leftrightarrow\left(5x-15-14x-7\right)\left(5x-15+14x+7\right)=0\)
\(\Leftrightarrow\left(-9x-22\right)\left(19x-8\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}-9x-22=0\\19x-8=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}-9x=22\\19x=8\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{22}{-9}=\dfrac{-22}{9}\\x=\dfrac{8}{19}\end{matrix}\right.\)
Vậy \(x=\dfrac{-22}{9}\) hoặc \(x=\dfrac{8}{19}\)
d) \(9\left(3x-2\right)^2=121\left(1-4x\right)^2\)
\(\Leftrightarrow9\left(3x-2\right)^2-121\left(1-4x\right)^2=0\)
\(\Leftrightarrow3^2\left(3x-2\right)^2-11^2\left(1-4x\right)^2=0\)
\(\Leftrightarrow\left[3\left(3x-2\right)\right]^2-\left[11\left(1-4x\right)\right]^2=0\)
\(\Leftrightarrow\left(9x-6\right)^2-\left(11-44x\right)^2=0\)
\(\Leftrightarrow\left(9x-6-11+44x\right)\left(9x-6+11-44x\right)=0\)
\(\Leftrightarrow\left(53x-17\right)\left(-35x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}53x-17=0\\-35x+5=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}53x=17\\-35x=-5\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{17}{53}\\x=\dfrac{-5}{-35}=\dfrac{1}{7}\end{matrix}\right.\)
Vậy \(x=\dfrac{17}{53}\) hoặc \(x=\dfrac{1}{7}\)
a/ \(\left(x-1\right)^2=0\)
\(\Leftrightarrow\left(x-1\right)^2=0^2\)
\(\Leftrightarrow x-1=0\)
\(\Leftrightarrow x=1\)
Vậy ..
b/ \(x\left(x-5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-5=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=5\end{matrix}\right.\)
Vậy ..
c/ \(x^2+4x=0\)
\(\Leftrightarrow x\left(x+4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+4=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-4\end{matrix}\right.\)
Vậy ..
d/ \(\left(2x+3\right)^2=49\)
\(\Leftrightarrow\left(2x+3\right)^2=7^2=\left(-7\right)^2\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+3=7\\2x+3=-7\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-5\end{matrix}\right.\)
Vậy ..
a. (x-1)2 = 0
=> x-1=0 => x=1
b. x(x-5) = 0
=> \(\left[{}\begin{matrix}x=0\\x-5=0\end{matrix}\right.\)=> \(\left[{}\begin{matrix}x=0\\x=5\end{matrix}\right.\)
c. x2 + 4x = 0
x(x+4) = 0
=>\(\left[{}\begin{matrix}x=0\\x+4=0\end{matrix}\right.\)=>\(\left[{}\begin{matrix}x=0\\x=-4\end{matrix}\right.\)
d. (2x+3)2 = 49
(2x+3)2 = \(\left(\pm7\right)^2\)
=>\(\left[{}\begin{matrix}2x+3=7\\2x+3=-7\end{matrix}\right.\)=>\(\left[{}\begin{matrix}x=2\\x=-5\end{matrix}\right.\)
a,x.(x+7)=0
suy ra x=o hoặc x+7=0
vs x+7=0
x=0+7
x=7
vậy x=0 hoặc x=7
b(2+2x)(7-x)=0
suy ra 2+2x=0 hoặc 7-x=0
vs2+2x=0 vs7-x=0
2x =0-2 x=0+7
2x =(-2) x=7
x=(-2);2
x=-1
vậy x=-1 hoặc x=7
d(x^2-9)(3x+15)=0
suy ra x^2-9=0 hoặc 3x+15=0
vsx^2-9=0 vs 3x+15=0
x^2 =0+9 3x =0-15
x^2 =9 3x =-15
x^2 =3^2 x=(-15):3
suy ra x=3 hoặc x=-3 x=-5
vậy x=3 x=-3 hoặc x=-5
e,(4x-8)(x^2+1)=0
suy ra4x-8=0 hoặc x^2+1=0
vs 4x-8=0 vs x^2+1=0
4x =0+8 x^2 =0-1
4x =8 x^2 =-1
x =8:4 x^2 =-1^2 hoặc 1^2
x =2 suy ra x=-1 hoặc x=1
vậy x=2, x=-1 hoặc x=1
đăng kí hộ
https://www.youtube.com/channel/UCT23clmdY5azigRNMRDxGfw
a) \(\left(x^2+5\right).\left(x^2-25\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x^2+5=0\\x^2-25=0\end{cases}\Rightarrow\orbr{\begin{cases}x^2=-5\left(vl\right)\\x^2=25\end{cases}\Rightarrow}\orbr{\begin{cases}\\x=\pm5\end{cases}}}\)
b) \(\left(x^2-5\right)\left(x^2-25\right)< 0\)
\(\Rightarrow\left(x^2-5\right)\)và \(\left(x^2-25\right)\)trái dấu
Vì \(\left(x^2-5\right)>\left(x^2-25\right)\)
\(\Rightarrow\hept{\begin{cases}x^2-5>0\\x^2-25< 25\end{cases}\Rightarrow\hept{\begin{cases}x^2>5\\x^2< 50\end{cases}}}\)
\(\Rightarrow5< x^2< 50\)
\(\Rightarrow x^2\in\left\{0;1;4;9;16;25;36;49\right\}\)
\(\Rightarrow x\in\left\{0;\pm1;\pm2;\pm3;\pm4;\pm5;\pm6;\pm7\right\}\)
c) \(\left(x-2\right)\left(x+1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-2=0\\x+1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=2\\x=-1\end{cases}}}\)
các câu còn lại lm tương tự nhé!! hok tốt!!
a) \(\left(x^2+5\right)\left(x^2-25\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2+5=0\\x^2-25=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x\in\varnothing\\x=5\end{cases}}\)\(\Rightarrow x=5\)
b) \(\left(x^2-5\right)\left(x^2-25\right)< 0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2-5< 0\\x^2-25< 0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x< \sqrt{5}\\x< 5\end{cases}}\)
c) \(\left(x-2\right)\left(x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\x+1=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=2\\x=-1\end{cases}}\)
Câu (d) và (e) bạn làm tương tự (a) và (b) nhé
a, \(\left(x^2+5\right)\left(x^2-25\right)=0\)= 0
⇒[\(x^2\)
+5=0x\(^2\)+25=0⇒[\(x^2\)
=−5(loại)\(x^2\)=−25(loại)⇒[x2+5=0x2+25=0⇒[x2=−5(loại)x2=−25(loại)
Vậy \(x\in\varnothing\)
b, \(\left(x^2-5\right)\left(x^2-25\right)\) < 0
<=> \(x^2\)- 5 và \(x^2\)- 25 trái dấu
Ta thấy \(x^2\) - 5 > \(x^2\) - 25 nên {\(x^2\)
−5>0\(x^2\)
−25<0{x2−5>0x2−25<0 <=> x < 5
c, (x - 2)(x + 1) = 0
⇒[x−2=0x+1=0⇒[x=2x=−1⇒[x−2=0x+1=0⇒[x=2x=−1
Vậy x∈{2;−1}
d)\(\left(x^2+7\right)\left(x^2-49\right)< 0\)
olm.vn/hoi-dap/detail/28995343852.html
bạn tham khảo nha thực ra mình ko biết làm tha lỗi
e) \(\left(x^2-7\right)\left(x^2-49\right)< 0\)
TH1: ⇒\(\hept{\begin{cases}x^2-7< 0\\x^2-49>0\end{cases}\Rightarrow}\hept{\begin{cases}x^2< 7\\x^2>49\end{cases}\Rightarrow\hept{\begin{cases}x< 2\\x>7\end{cases}}}\)
TH2: ⇒\(\hept{\begin{cases}x^2-7>0\\x^2-49< 0\end{cases}\Rightarrow\hept{\begin{cases}x^2>7\\x^2< 49\end{cases}\Rightarrow}\hept{\begin{cases}x>3\\x< 7\end{cases}}}\)
Vậy x < 2 và x >7 hoặc x >3 và x < 7
a, 3x2 +12x=0
3x(x+4)=0
=> 3x=0 hoặc x+4=0
=> x=0 hoặc x= -4
Vậy x=0; x= -4
b, 4x3 = 4x
4x3- 4x=0
4x(x2- 1) =0
4x(x-1)(x+1)=0
=> 4x=0 hoặc x-1=0 hoặc x+1=0
=> x=0 hoặc x=1 hoặc x=-1
Vậy x=0; x=1;x=-1
c, ( x-1)(x+1)+2=0
x2- 1+2=0
x2+1=0
x2 = -1
=> x vô nghiệm
a. 4x2-25=0
=> (2x)2-52=0
=> (2x-5)(2x+5)=0
=> 2x-5=0 hoặc 2x+5=0
=> 2x=5 hoặc 2x=-5
=> x=5:2 hoặc x=-5:2
=> x=2,5 hoặc x=-2,5
b. (x-1)(4x2-49)=0
=> (x-1)[(2x)2-72 ]=0
=> (x-1)(2x-7)(2x+7)=0
=> x-1=0 hoặc 2x-7=0 hoặc 2x+7=0
=> x=1 hoặc 2x=7 hoặc 2x=-7
=> x=1 hoặc x=7:2=3,5 hoặc x=-7:2=-3,5