Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(7x\left(x+1\right)-3\left(x+1\right)=0\Rightarrow\left(x+1\right)\left(7x-3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x+1=0\\7x+3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-1\\x=-\dfrac{3}{7}\end{matrix}\right.\)
b) 3(x + 8) - x2 - 8x = 0
=> 3(x + 8) - (x2 + 8x) = 0
=> 3(x + 8) - x(x + 8) = 0
=> (x + 8)(3 - x) = 0 => \(\left[{}\begin{matrix}x+8=0\\3-x=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-8\\x=3\end{matrix}\right.\)
c) \(x^2-10x=-25\Rightarrow x^2-10x+25=0\Rightarrow\left(x-5\right)^2=0\Rightarrow x=5\)
d) Giống câu c
a)
b) 3(x + 8) - x2 - 8x = 0
=> 3(x + 8) - (x2 + 8x) = 0
=> 3(x + 8) - x(x + 8) = 0
=> (x + 8)(3 - x) = 0 =>
c)
a)\(x\left(x^2-0,25\right)=0\)
TH1:\(x=0\) TH2:\(x^2-0,25=0\)
\(x^2=0,25=>x=0,5\)
Vậy x E \(\hept{0,5;0}\)
a) \(\left(x^2-1\right)\left(x^2-25\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2-1=0\\x^2-25=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x^2=1\\x^2=25\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\pm1\\x=\pm5\end{cases}}\)
b) \(x^2-8x+16=0\)
\(\Leftrightarrow\left(x-4\right)^2=0\)
\(\Leftrightarrow x-4=0\)
\(\Leftrightarrow x=4\)
c) \(x^3+3x^2+3x+1=0\)
\(\Leftrightarrow\left(x+1\right)^3=0\)
\(\Leftrightarrow x+1=0\)
\(\Rightarrow x=-1\)
d) \(x^3+10x^2+25x=0\)
\(\Leftrightarrow x\left(x+5\right)^2=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=-5\end{cases}}\)
a) ( x2 - 1 )( x2 - 25 ) = 0
<=> \(\orbr{\begin{cases}x^2-1=0\\x^2-25=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\pm1\\x=\pm5\end{cases}}\)
b) x2 - 8x + 16 = 0
<=> ( x - 4 )2 = 0
<=> x - 4 = 0
<=> x = 4
c) x3 + 3x2 + 3x + 1 = 0
<=> ( x + 1 )3 = 0
<=> x + 1 = 0
<=> x = -1
d) x3 + 10x2 + 25x = 0
<=> x( x2 + 10x + 25 ) = 0
<=> x( x + 5 )2 = 0
<=> \(\orbr{\begin{cases}x=0\\x+5=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-5\end{cases}}\)
a, 4x2 - 49 = 0
⇔⇔ (2x)2 - 72 = 0
⇔⇔ (2x - 7)(2x + 7) = 0
⇔{2x−7=02x+7=0⇔⎧⎪ ⎪⎨⎪ ⎪⎩x=72x=−72⇔{2x−7=02x+7=0⇔{x=72x=−72
b, x2 + 36 = 12x
⇔⇔ x2 + 36 - 12x = 0
⇔⇔ x2 - 2.x.6 + 62 = 0
⇔⇔ (x - 6)2 = 0
⇔⇔ x = 6
e, (x - 2)2 - 16 = 0
⇔⇔ (x - 2)2 - 42 = 0
⇔⇔ (x - 2 - 4)(x - 2 + 4) = 0
⇔⇔ (x - 6)(x + 2) = 0
⇔{x−6=0x+2=0⇔{x=6x=−2⇔{x−6=0x+2=0⇔{x=6x=−2
f, x2 - 5x -14 = 0
⇔⇔ x2 + 2x - 7x -14 = 0
⇔⇔ x(x + 2) - 7(x + 2) = 0
⇔⇔ (x + 2)(x - 7) = 0
⇔{x+2=0x−7=0⇔{x=−2x=7
\(a,x^4-2x^3+5x^2-10x=0\\ \Leftrightarrow x^3\left(x-2\right)+5x\left(x-2\right)=0\\ \Leftrightarrow x\left(x^2+5\right)\left(x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\\x^2+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\\x\in\varnothing\left(x^2+5>0\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)
\(b,\left(3x+5\right)^2=\left(2x-2\right)^2\\ \Leftrightarrow\left(3x+5\right)^2-\left(2x-2\right)^2=0\\ \Leftrightarrow\left(3x+5+2x-2\right)\left(3x+5-2x+2\right)=0\\ \Leftrightarrow\left(5x+3\right)\left(x+7\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{3}{5}\\x=-7\end{matrix}\right.\)
\(c,x^3-2x^2+x=0\\ \Leftrightarrow x\left(x-1\right)^2=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)
\(d,x^2\left(x-1\right)-4x^2+8x-4=0\\ \Leftrightarrow x^2\left(x-1\right)-4\left(x-1\right)^2=0\\ \Leftrightarrow\left(x-1\right)\left(x^2-4x+4\right)=0\\ \Leftrightarrow\left(x-1\right)\left(x-2\right)^2=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
a) \(x^4-2x^3+5x^2-10x=0\\ \Rightarrow\left(x^4-2x^3\right)+\left(5x^2-10x\right)=0\\ \Rightarrow x^3\left(x-2\right)+5x\left(x-2\right)=0\\ \Rightarrow\left(x^3+5x\right)\left(x-2\right)=0\\ \Rightarrow x\left(x^2+5\right)\left(x-2\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=0\\x^2+5=0\\x-2=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=0\\x=\pm\sqrt{5}\\x=2\end{matrix}\right.\)
Vậy \(x=\left\{-\sqrt{5};0;\sqrt{5};2\right\}\)
b) \(\left(3x+5\right)^2=\left(2x-2\right)^2\\ \Rightarrow\left[{}\begin{matrix}3x+5=2x-2\\3x+5=-2x+2\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=-7\\x=-\dfrac{3}{5}\end{matrix}\right.\)
c) \(x^3-2x^2+x=0\\ \Rightarrow x\left(x^2-2x+1\right)=0\\ \Rightarrow x\left(x-1\right)^2=0\\ \Rightarrow\left[{}\begin{matrix}x=0\\\left(x-1\right)^2=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)
vậy ...
d) \(x^2\left(x-1\right)-4x^2+8x-4=0\\ x^2\left(x-1\right)-\left(4x^2-8x+4\right)=0\\ x^2\left(x-1\right)-\left(2x-2\right)^2=0\\ \Rightarrow x^2\left(x-1\right)-4\left(x-1\right)^2=0\\ \Rightarrow\left(x-1\right)\left[x^2-4\left(x-1\right)\right]=0\\ \Rightarrow\left(x-1\right)\left(x^2-4x+4\right)=0\\ \Rightarrow\left(x-1\right)\left(x-2\right)^2=0\)
\(\Rightarrow\left[{}\begin{matrix}x-1=0\\\left(x-2\right)^2=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
a)
x2-4x+4=0
=>x2+2.x.2+22=0
=>(x-2)2=0
=>x-2=0
=>x=0+2
=>x=2
`a, x^2-10x+25=0`
`<=>x^2 -2.x.5+5^2=0`
`<=>(x-5)^2=0`
`<=>x-5=0`
`<=>x=5`
__
`x^2 -8x+16=0`
`<=> x^2 - 2.x.4+4^2=0`
`<=>(x-4)^2=0`
`<=>x-4=0`
`<=>x=4`
__
`x^2-49=0`
`<=>x^2 - 7^2=0`
`<=>(x-7)(x+7)=0`
`<=>x-7=0` hoặc `x+7=0`
`<=> x=7` hoặc `x=-7`
__
`4x^2-25=0`
`<=> (2x)^2 -5^2=0`
`<=>(2x-5)(2x+5)=0`
`<=>2x-5=0` hoặc `2x+5=0`
`<=> 2x=5` hoặc `2x=-5`
`<=>x=5/2` hoặc `x=-5/2`
a: =>(x-5)^2=0
=>x-5=0
=>x=5
b: =>(x-4)^2=0
=>x-4=0
=>x=4
c: =>(x-7)(x+7)=0
=>x-7=0 hoặc x+7=0
=>x=7 hoặc x=-7
d: =>(2x-5)(2x+5)=0
=>2x-5=0 hoặc 2x+5=0
=>x=5/2 hoặc x=-5/2