Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 32 : (3.x - 2) = 8
3x - 2 = 32 : 8
3x - 2 = 4
3x = 4 + 2
3x = 6
x = 6 : 3
x = 2
b) 75 : (x - 18) = 25
x - 18 = 75 : 25
x - 18 = 3
x = 3 + 18
x = 21
c) (15 - 6.x) . 243 = 729
15 - 6x = 729 : 243
15 - 6x = 3
6x = 15 - 3
6x = 12
x = 12 : 6
x = 2
d) 4.(x - 12) + 9 = 17
4(x - 12) = 17 - 9
4(x - 12) = 8
x - 12 = 8 : 4
x - 12 = 2
x = 2 + 12
x = 14
e) 20 - 2.(x + 4) = 4
2(x + 4) = 20 - 4
2(x + 4) = 16
x + 4 = 16 : 2
x + 4 = 8
x = 8 : 2
x = 4
`32: ( 3xx x -2)=8`
`3xx x-2=32:8`
`3xx x-2=4`
`3 xx x=4+2`
`3xx x=6`
`x=6:3`
`x=2`
__
`75 : (x-18) =25`
`x-18=75:25`
`x-18= 3`
`x=3+18`
`x=21`
__
`(15-6 xx x ) xx 243 =729`
`15-6 xx x = 729 : 243`
`15-6 xx x = 3`
`6 xx x=15-3`
`6 xx x=12`
`x=12:6`
`x=2`
__
`4 xx (x-12)+9=17`
`4 xx (x-12)=17-9`
`4 xx (x-12)= 8`
`x-12=8:4`
`x-12=2`
`x=2+12`
`x=14`
__
`20-2xx(x+4)=4`
`2xx(x+4)=20-4`
`2xx(x+4)=16`
`x+4=16:2`
`x+4=8`
`x=8-4`
`x=4`
a) Ta có: 3x = 2y => \(\frac{x}{2}=\frac{y}{3}\) => \(\frac{x}{10}=\frac{y}{15}\)
7y = 5z => \(\frac{y}{5}=\frac{z}{7}\) => \(\frac{y}{15}=\frac{z}{21}\)
=> \(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x-y+z}{10-15+21}=\frac{32}{16}=2\)
=> \(\hept{\begin{cases}\frac{x}{10}=2\\\frac{y}{15}=2\\\frac{z}{21}=2\end{cases}}\) => \(\hept{\begin{cases}x=2.10=20\\y=2.15=30\\z=2.21=42\end{cases}}\)
Vậy ...
b) Tương tự câu trên
c) Ta có: \(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\) => \(\frac{x}{\frac{3}{2}}=\frac{y}{\frac{4}{3}}=\frac{z}{\frac{5}{4}}\)
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{\frac{3}{2}}=\frac{y}{\frac{4}{3}}=\frac{z}{\frac{5}{4}}=\frac{x+y+z}{\frac{3}{2}+\frac{4}{3}+\frac{5}{4}}=\frac{49}{\frac{49}{12}}=12\)
=> \(\hept{\begin{cases}\frac{x}{\frac{3}{2}}=12\\\frac{y}{\frac{4}{3}}=12\\\frac{z}{\frac{5}{4}}=12\end{cases}}\) => \(\hept{\begin{cases}x=12\cdot\frac{3}{2}=18\\y=12\cdot\frac{4}{3}=16\\z=12\cdot\frac{5}{4}=15\end{cases}}\)
Vậy ....
d) HD : Ta có: \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\) => \(\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}\)
(Sau đó áp dụng t/c của dãy tỉ số bằng nhau rồi làm tương tự như trên)
e) HD: Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=k\) => x = 2k; y = 3k; z = 5k (*)
Thay x = 2k; y = 3k ; z = 5k vào xyz = 810 => tìm k => thay k ngược lại vào (*)
Nếu ko hiểu cứ hỏi t
b,Sửa đề : \(\frac{x}{3}=\frac{y}{4};\frac{y}{2}=\frac{z}{5}\)\(2x-3y+z=6\)
Ta có : \(\frac{x}{3}=\frac{y}{4}\Leftrightarrow\frac{x}{6}=\frac{y}{8}\)(*)
\(\frac{y}{2}=\frac{z}{5}\Leftrightarrow\frac{y}{8}=\frac{z}{20}\)(**)
Từ (*);(**) \(\Rightarrow\frac{x}{6}=\frac{y}{8}=\frac{z}{20}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{6}=\frac{y}{8}=\frac{z}{20}=\frac{2x-3y+z}{2.6-3.8+20}=\frac{49}{8}\)
\(x=36,75;y=49;z=122,5\)
a) x.(x-2)=0
=>x=0 hoặc x-2=0
=>x=0 hoặc x=2
b) (x-1).(2x-4)=0
=>x-1=0 hoặc 2x-4 =0
=>x=0+1 hoặc x= (0+4):2
=>x=1 hoặc x=2
a) x.(x-2)=0
=>x=0 hoặc x-2=0
=>x=0 hoặc x=2
b) (x-1).(2x-4)=0
=>x-1=0 hoặc 2x-4 =0
=>x=0+1 hoặc x= (0+4):2
=>x=1 hoặc x=2
a)\(3:\left(2x+1\right)=72-69\)
\(3:\left(2x+1\right)=3\)
\(2x+1=3:3\)
\(2x+1=1\)
\(2x=1-1\)
\(2x=0\)
\(x=0:2\)
\(x=0\)
các bài còn lại giống như câu a nha nếu ko biết thì comment lại minhf sẽ giải cho . Nhớ k cho mình nha