Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
X + 1 + 1 + 1 + 1 + 2 + 2 + 2 + 3 + 3 + 3 + 3 + 4 + 4 + 4 + 5 + 5 + 5 + 6 + ( -6 ) = 500
X + 49 = 500
X = 500 - 49
X = 451
k minh nhe minh tra loi nhanh nhat , dung nhat va day du nhat
a) (3x-15)7 = 0
3x-15 = 0
3x = 0+15
3x = 15
x = 15:3
x = 5
b) 42x-6 = 1
2x-6 = 0
2x = 0+6
2x = 6
x = 6:2
x = 3
c) Tớ ko bít
d) (x - 6)3 = (x - 6)2
Th1:
x - 6 = 1
x = 1 + 6
x = 7
Th2:
x - 6 = 0
x = 6
Vậy x = 7
x = 6
--thodagbun--
a, (3x-15)^7=0 <=> 3x-15=0 <=> x=5
b, 42x+6=1 <=> 16x=-5 <=>x=-5/16
c, \(\dfrac{\left(3-x\right)^{10x}}{\left(3-x\right)^{20}}=1\Leftrightarrow\left(3-x\right)^{10x-20}=1\)
TH1: 10x-20 = 0 <=> x=2
TH2: 3-x=1 <=> x=2
Vậy x=2
d, (x-6)^3 = (x-6)^2
<=> (x-6)^2.[(x-6)-1]=0
<=> (x-6)^2=0 hoặc (x-6)-1=0
<=> x=6 hoặc x=7
b: \(\dfrac{5}{7}-\dfrac{2}{3}\cdot x=\dfrac{4}{5}\)
=>\(\dfrac{2}{3}x=\dfrac{5}{7}-\dfrac{4}{5}=\dfrac{25-28}{35}=\dfrac{-3}{35}\)
=>\(x=-\dfrac{3}{35}:\dfrac{2}{3}=\dfrac{-3}{35}\cdot\dfrac{3}{2}=-\dfrac{9}{70}\)
c: \(\dfrac{1}{2}x+\dfrac{3}{5}x=-\dfrac{2}{3}\)
=>\(x\left(\dfrac{1}{2}+\dfrac{3}{5}\right)=-\dfrac{2}{3}\)
=>\(x\cdot\dfrac{5+6}{10}=\dfrac{-2}{3}\)
=>\(x\cdot\dfrac{11}{10}=-\dfrac{2}{3}\)
=>\(x=-\dfrac{2}{3}:\dfrac{11}{10}=-\dfrac{2}{3}\cdot\dfrac{10}{11}=\dfrac{-20}{33}\)
d: \(\dfrac{4}{7}\cdot x-x=-\dfrac{9}{14}\)
=>\(\dfrac{-3}{7}\cdot x=\dfrac{-9}{14}\)
=>\(\dfrac{3}{7}\cdot x=\dfrac{9}{14}\)
=>\(x=\dfrac{9}{14}:\dfrac{3}{7}=\dfrac{9}{14}\cdot\dfrac{7}{3}=\dfrac{3}{2}\)
a) (2x - 3)(6 - 2x) = 0
=> \(\left[{}\begin{matrix}2x-3=0\\6-2x=0\end{matrix}\right.=>\left[{}\begin{matrix}2x=3\\2x=6\end{matrix}\right.=>\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=3\end{matrix}\right.\)
b) \(5\dfrac{4}{7}:x=13=>\dfrac{39}{7}:x=13=>x=\dfrac{39}{7}:13=>x=\dfrac{3}{7}\)
c) \(2x-\dfrac{3}{7}=6\dfrac{2}{7}=>2x-\dfrac{3}{7}=\dfrac{44}{7}=>2x=\dfrac{47}{7}=>x=\dfrac{47}{14}\)
d) \(\dfrac{x}{5}+\dfrac{1}{2}=\dfrac{6}{10}=>\dfrac{x}{5}=\dfrac{6}{10}-\dfrac{1}{2}=>\dfrac{x}{5}=\dfrac{1}{10}=>x.10=5=>x=\dfrac{1}{2}\)
e) \(\dfrac{x+3}{15}=\dfrac{1}{3}=>\left(x+3\right).3=15=>x+3=5=>x=2\)
\(a.\)
\(\left(x-19\right)\left(x+21\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-19=0\\x+21=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=19\\x=-21\end{matrix}\right.\)
\(S=\left\{19,-21\right\}\)
\(b.\)
\(\left(53-x\right)\left(41+x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}53-x=0\\41+x=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=53\\x=-41\end{matrix}\right.\)
\(S=\left\{53,-41\right\}\)
Tìm x:
a) (x-19).(x+21)=0
<=>\(\left\{{}\begin{matrix}x-19=0< =>x=19\\x+21=0< =>x=-21\end{matrix}\right.\)
Vậy pt trên có tập nghiệm là: S={19;-21}
b)(53-x).(41+x)=0
<=>\(\left\{{}\begin{matrix}53-x=0< =>x=53\\41+x=0< =>x=-41\end{matrix}\right.\)
Vậy pt trên có tập nghiệm là S={53;-41}
a: x(x+5)=0
=>\(\left[{}\begin{matrix}x=0\\x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)
b: 2x(x+3)=0
=>x(x+3)=0
=>\(\left[{}\begin{matrix}x=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-3\end{matrix}\right.\)
c: \(\left(6-x\right)\left(x+10\right)=0\)
=>\(\left[{}\begin{matrix}6-x=0\\x+10=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6-0=6\\x=0-10=-10\end{matrix}\right.\)
d: \(\left(5x+20\right)\left(x^2+1\right)=0\)
=>\(5x+20=0\left(x^2+1>=1>0\forall x\right)\)
=>5x=-20
=>x=-4
a,(2x+7)+135=0 b, 1/2x-2/5=1/5
2x+7=0-135 1/2x=1/5+2/5
2x+7=-135 1/2x=3/5
2x=-135-7 x=3/5:1/2
2x=-142 x=6/5
x=-142:2 Vậy x=6/5
x=-71
Vậy x=-71
c, 10-|x+1|=5 d, 1/2x+150%x=2014
|x+1|=10-5 2x=2014
|x+1|=5 x=2014:2
*TH1:x+1=5 *TH2:x+1=-5 x=1007
x=5-1 x=-5-1 Vậy x=1007
x=4 x=-6
Vậy x=4 hoặc x=-6
a) x (x-2)+x-2=0
=> x.(x-2)+(x-2)=0
=> (x-2).(x+1)=0
=> Hoặc là x-2=0 => x=2
Hoặc là x+1=0 => x=-1
b) 5x (x-3)-x+3=0
=> 5x.(x-3)-(x-3)=0
=> (x-3).(5x-1)=0
=>Hoặc là x-3=0 => x=3
Hoặc là 5x-1=0 => x=1/5
a, x(x-2)+x-2=0
=> x(x-2)+(x-2)=0
=> (x-2).(x+1)=0
=> \(\hept{\begin{cases}x-2=0\\x+1=0\end{cases}}\Rightarrow\hept{\begin{cases}x=2\\x=-1\end{cases}}\)
b, 5x(x-3)-x+3=0
=> 5x(x-3)-(x-3)=0
=> (x-3).(5x-1)=0
=> \(\hept{\begin{cases}x-3=0\\5x-1=0\end{cases}}\Rightarrow\hept{\begin{cases}x=3\\x=\frac{1}{5}\end{cases}}\)