\(\frac{11}{1.3}\) +   \(\frac{11}{3.5}\)+ .....">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(=\frac{1}{3}.\left(1-\frac{1}{4}\right)+\frac{1}{3}.\left(\frac{1}{4}-\frac{1}{7}\right)+\frac{1}{3}.\left(\frac{1}{7}-\frac{1}{9}\right)+...+\frac{1}{3}.\left(\frac{1}{97}-\frac{1}{100}\right)=\frac{x}{2}\)

\(=\frac{1}{3}.\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{97}-\frac{1}{100}\right)=\frac{x}{2}\)

\(=\frac{1}{3}.\left(1-\frac{1}{100}\right)=\frac{x}{2}\)

\(\frac{1}{3}.\frac{99}{100}=\frac{x}{2}\)

\(\frac{99}{300}=\frac{x}{2}\)

\(x\)ko thỏa mãn

20 tháng 8 2016

\(\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.9}+......+\frac{1}{97.100}=\frac{x}{2}\)

\(\Rightarrow\frac{1}{3}.\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+.....+\frac{1}{97}-\frac{1}{100}\right)=\frac{x}{2}\)

\(\Rightarrow\frac{1}{3}.\left(1-\frac{1}{100}\right)=\frac{x}{2}\Rightarrow\frac{1}{3}.\frac{99}{100}=\frac{x}{2}\Rightarrow\frac{33}{100}=\frac{x}{2}\Rightarrow\frac{33}{100}=\frac{50x}{100}\Rightarrow33=50x\Rightarrow x=\frac{33}{50}\)

15 tháng 5 2017

\(\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{x}-\frac{1}{x+2}\right)=\frac{5}{11}.\)

\(\frac{1}{2}\left(1-\frac{1}{x+2}\right)=\frac{5}{11}\)

\(1-\frac{1}{x+2}=\frac{5}{11}:\frac{1}{2}\)

\(1-\frac{1}{x+2}=\frac{5}{11}\cdot2=\frac{10}{11}\)

\(\frac{1}{x+2}=1-\frac{10}{11}\)

\(\frac{1}{x+2}=\frac{1}{11}\)

\(\Rightarrow x+2=11\)

\(\Rightarrow x=11-2=9\)

vậy x=9

ko viết đề bài nha

15 tháng 5 2017

dễ hèo

26 tháng 5 2017

b) \(B=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2014.2015}\)

\(B=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2014}+\frac{1}{2015}\)

\(B=1-\frac{1}{2015}\)

\(B=\frac{2014}{2015}\)

26 tháng 5 2017

a) \(A=\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot...\cdot\frac{99}{100}\)

\(=\frac{1}{100}\)

b)\(B=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2014}-\frac{1}{2015}\)

\(=1-\frac{1}{2015}\)

\(=\frac{2014}{2015}\)

còn lại tự giải nha gần giống như phần b thôi cũng thú vị.

ủng hộ nha

13 tháng 4 2018

Giải:

a) \(\left(4,5-2x\right).\left(-1\dfrac{4}{7}\right)=\dfrac{11}{14}\)

\(\Leftrightarrow\left(4,5-2x\right).\left(-\dfrac{3}{7}\right)=\dfrac{11}{14}\)

\(\Leftrightarrow4,5-2x=\dfrac{11}{14}:\left(-\dfrac{3}{7}\right)=-\dfrac{11}{6}\)

\(\Leftrightarrow2x=4,5-\left(-\dfrac{11}{6}\right)\)

\(\Leftrightarrow2x=\dfrac{19}{3}\)

\(\Leftrightarrow x=\dfrac{19}{3}:2=\dfrac{19}{6}\)

Vậy ...

b) \(\dfrac{4}{9}x=\dfrac{9}{8}-0,125\)

\(\Leftrightarrow\dfrac{4}{9}x=\dfrac{9}{8}-\dfrac{1}{8}\)

\(\Leftrightarrow\dfrac{4}{9}x=1\)

\(\Leftrightarrow x=1:\dfrac{4}{9}=\dfrac{9}{4}\)

Vậy ...

Các câu còn lại làm tương tự.

12 tháng 8 2020

TA CÓ THỂ THẤY, VẾ TRÁI CÓ: 12 CẶP

=>   \(12x+\left(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{23.25}\right)=11x+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^5}\)

<=>  \(x+\left(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{23.25}\right)=\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^5}\)       (****)

Ta xét:    \(A=\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{23.25}\)

=>   \(2A=\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{23.25}\)

=>   \(2A=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{23}-\frac{1}{25}\)

=>   \(2A=1-\frac{1}{25}=\frac{24}{25}\)

=>   \(A=\frac{12}{25}\)

Ta tiếp tục xét:      \(B=\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^5}\)

=>   \(3B=1+\frac{1}{3}+...+\frac{1}{3^4}\)

=>   \(3B-B=\left(1+\frac{1}{3}+...+\frac{1}{3^4}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^5}\right)\)

=>   \(2B=1-\frac{1}{3^5}=\frac{242}{243}\)

=>   \(B=\frac{121}{243}\)

THAY CÁC GIÁ TRỊ A; B VÀO PT (****) TA ĐƯỢC: 

=>   \(x+\frac{12}{25}=\frac{121}{243}\)

<=>   \(x=\frac{121}{243}-\frac{12}{25}=\frac{109}{6075}\)

24 tháng 7 2019

a) \(\frac{4}{11}-\frac{7}{15}+\frac{7}{11}-\frac{5}{15}\)

\(=\left(\frac{4}{11}+\frac{7}{11}\right)-\left(\frac{7}{15}+\frac{5}{15}\right)\)

\(=1-\frac{4}{5}\)

\(=\frac{1}{5}\)

b) \(\frac{7}{3}-\frac{4}{9}-\frac{1}{3}-\frac{5}{9}\)

\(=\left(\frac{7}{3}-\frac{1}{3}\right)-\left(\frac{4}{9}+\frac{5}{9}\right)\)

\(=2-1\)

\(=1\)

c) \(\frac{1}{4}+\frac{7}{33}-\frac{5}{3}\)

\(=\frac{-1}{4}+\frac{-16}{11}\)

\(=\frac{-75}{44}\)

d) \(\frac{-3}{4}\times\frac{8}{11}-\frac{3}{11}\times\frac{1}{2}\)

\(=\frac{-6}{11}-\frac{3}{22}\)

\(=\frac{15}{22}\)

e) \(\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+\frac{1}{99}+\frac{1}{143}+\frac{1}{195}\) 

\(=\frac{1}{3\times5}+\frac{1}{5\times7}+\frac{1}{7\times9}+\frac{1}{9\times11}+\frac{1}{11\times13}+\frac{1}{13\times15}\)

\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+\frac{1}{11}-\frac{1}{13}+\frac{1}{13}-\frac{1}{15}\)

\(=\frac{1}{3}-\frac{1}{15}\)

\(=\frac{4}{15}\)

13 tháng 8 2019

1.

a) \(A=\frac{3}{1\cdot4}+\frac{3}{4\cdot7}+\frac{3}{7\cdot10}+...+\frac{3}{97\cdot100}\\ A=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{97}-\frac{1}{100}\\ A=1-\frac{1}{100}=\frac{99}{100}\)

b) Sửa đề: B = 1/2.5 + 1/5.8 + 1/8.11 + ...

\(B=\frac{1}{2\cdot5}+\frac{1}{5\cdot8}+\frac{1}{8\cdot11}+...+\frac{1}{92\cdot95}+\frac{1}{95\cdot98}\\ B=\frac{1}{3}\left(\frac{3}{2\cdot5}+\frac{3}{5\cdot8}+\frac{3}{8\cdot11}+...+\frac{3}{92\cdot95}+\frac{3}{95\cdot98}\right)\\ B=\frac{1}{3}\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{92}-\frac{1}{95}+\frac{1}{95}-\frac{1}{98}\right)\\ B=\frac{1}{3}\left(\frac{1}{2}-\frac{1}{98}\right)\\ B=\frac{1}{6}-\frac{1}{294}\\ B=\frac{49}{294}-\frac{1}{294}=\frac{48}{294}=\frac{8}{49}\)

2.

\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{n\left(n+1\right)}=\frac{1999}{2000}\\ \frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{n\left(n+1\right)}=\frac{1999}{2000}\\ 2\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{n\left(n+1\right)}\right)=\frac{1999}{2000}\\ 2\left(\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{n\left(n+1\right)}\right)=\frac{1999}{2000}\\ 2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{n}-\frac{1}{n+1}\right)=\frac{1999}{2000}\\ 2\left(\frac{1}{2}-\frac{1}{n+1}\right)=\frac{1999}{2000}\\ \frac{1}{2}-\frac{1}{n+1}=\frac{1999}{2000}:2\\ \frac{1}{2}-\frac{1}{n+1}=\frac{1999}{4000}\\ \frac{1}{2}-\frac{1999}{4000}=\frac{1}{n+1}\\ \frac{1}{n+1}=\frac{1}{4000}\\ \Rightarrow n+1=4000\\ \Rightarrow n=3999\)

Vậy n = 3999

13 tháng 8 2019

Chương III : Phân sốChương III : Phân sốChương III : Phân số