K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 7 2019

\(1\frac{1}{9}x-\frac{5}{18}=\frac{5}{6}\)

\(\Leftrightarrow\frac{10x}{9}=\frac{5}{6}+\frac{5}{18}=\frac{10}{9}\)

\(\Rightarrow x=1\)

10 tháng 4 2020

Lúc mới đọc đề tớ tưởng x+\(\frac{3}{2}\)chứ. Nhìn lại thì...

10 tháng 4 2020

Câu B đây;vừa bị lag

B, \(\frac{x+1}{35}\)+\(\frac{x+3}{33}\)=\(\frac{x+5}{31}\)+\(\frac{x+7}{29}\)

\(\frac{x+1}{35}\)+1+\(\frac{x+3}{33}\)+1=\(\frac{x+5}{31}\)+1+\(\frac{x+7}{29}\)+1

\(\frac{x+36}{35}\)+\(\frac{x+36}{33}\)-\(\frac{x+36}{31}\)-\(\frac{x+36}{29}\)=0

⇔ (x+36)(\(\frac{1}{35}\)+\(\frac{1}{33}\)-\(\frac{1}{31}\)-\(\frac{1}{29}\))=0

\(\frac{1}{35}\)+\(\frac{1}{33}\)-\(\frac{1}{31}\)-\(\frac{1}{29}\)<0

⇔ x+36=0

⇔ x=-36

Vậy tập nghiệm của phương trình đã cho là:S={-36}

câu C tương tự nhé

19 tháng 11 2015

bài của p hay trog sgk
 

1: \(\dfrac{x+6}{x-5}+\dfrac{x-5}{x+6}=\dfrac{2x^2+23x+61}{x^2+x-30}\)

\(\Leftrightarrow x^2+12x+36+x^2-10x+25=2x^2+23x+61\)

=>23x+61=2x+61

hay x=0

2: \(\dfrac{6}{x-5}+\dfrac{x+2}{x-8}=\dfrac{18}{\left(x-5\right)\left(8-x\right)}-1\)

\(\Leftrightarrow6x-48+x^2-3x-10=-18-x^2+13x-40\)

\(\Leftrightarrow x^2+3x-58+x^2-13x+58=0\)

\(\Leftrightarrow2x^2-10x=0\)

=>2x(x-5)=0

=>x=0

c: \(\dfrac{x^2-x}{x+3}-\dfrac{x^2}{x-3}=\dfrac{7x^2-3x}{9-x^2}\)

\(\Leftrightarrow\left(x^2-x\right)\left(x-3\right)-x^2\left(x+3\right)=-7x^2+3x\)

\(\Leftrightarrow x^3-3x^2-x^2+3x-x^3-3x^2+7x^2-3x=0\)

\(\Leftrightarrow x^2=0\)

hay x=0

6 tháng 10 2018

(3x+5)(4-3x)=0

3x+5 =0 hoặc 4-3x=0

3x=-5 hoặc 3x=-4

x=-5/3 hoặc x=-4/3

6 tháng 10 2018

9(3x-2)=x(2-3x)

9(3x-2)-x(3x-2)=0

(3x-2)(9-x)=0

3x-2=0 hoặc 9-x=0

3x=2 hoặc x= -9

x =2/3 hoặc x=-9 

vậy x =2/3 ; x= -9

20 tháng 2 2018

\(\text{a) }x\left(x+1\right)\left(x-1\right)\left(x+2\right)=24\\ \Leftrightarrow\left(x^2+x\right)\left(x^2-x+2x-2\right)=24\\ \Leftrightarrow\left(x^2+x\right)\left(x^2+x-2\right)=24\)

Đặt \(x^2+x-1=t\)

\(\Leftrightarrow\left(t+1\right)\left(t-1\right)=24\\ \Leftrightarrow t^2-1-24=0\\ \Leftrightarrow t^2-25=0\\ \Leftrightarrow\left(t+5\right)\left(t-5\right)=0\\ \Leftrightarrow\left(x^2+x-1+5\right)\left(x^2+x-1-5\right)=0\\ \Leftrightarrow\left(x^2+x+4\right)\left(x^2+x-6\right)=0\\ \Leftrightarrow\left(x^2+x+\dfrac{1}{4}+\dfrac{15}{4}\right)\left(x^2+3x-2x-6\right)=0\\ \Leftrightarrow\left[\left(x^2+x+\dfrac{1}{4}\right)+\dfrac{15}{4}\right]\left[\left(x^2+3x\right)-\left(2x+6\right)\right]=0\\ \Leftrightarrow\left[\left(x+\dfrac{1}{2}\right)^2+\dfrac{15}{4}\right]\left[x\left(x+3\right)-2\left(x+3\right)\right]=0\\ \Leftrightarrow\left(x-2\right)\left(x+3\right)=0\left(\text{Vì }\left(x+\dfrac{1}{2}\right)^2+\dfrac{15}{4}\ne0\right)\\ \Leftrightarrow\left[{}\begin{matrix}x-2=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-3\end{matrix}\right.\)

Vậy tập nghiệm phương trình là \(S=\left\{2;-3\right\}\)

\(\text{b) }\left(x-4\right)\left(x-5\right)\left(x-6\right)\left(x-7\right)=1680\\ \Leftrightarrow\left(x^2-4x-7x+28\right)\left(x^2-5x-6x+30\right)=1680\\ \Leftrightarrow\left(x^2-11x+28\right)\left(x^2-11x+30\right)=1680\)

Đặt \(x^2-11x+29=t\)

\(\Leftrightarrow\left(t-1\right)\left(t+1\right)=1680\\ \Leftrightarrow t^2-1-1680=0\\ \Leftrightarrow t^2-1681=0\\ \Leftrightarrow\left(t+41\right)\left(t-41\right)=0\\ \Leftrightarrow\left(x^2-11x+29+41\right)\left(x^2-11x+29-41\right)=0\\ \Leftrightarrow\left(x^2-11x+70\right)\left(x^2-11x-12\right)=0\\ \Leftrightarrow\left(x^2-11x+\dfrac{121}{4}+\dfrac{159}{4}\right)\left(x^2-12x+x-12\right)=0\\ \Leftrightarrow\left[\left(x^2-11x+\dfrac{121}{4}\right)+\dfrac{159}{4}\right]\left[\left(x^2-12x\right)+\left(x-12\right)\right]=0\\ \Leftrightarrow\left[\left(x-\dfrac{11}{2}\right)^2+\dfrac{159}{4}\right]\left[x\left(x-12\right)+\left(x-12\right)\right]=0\\ \Leftrightarrow\left(x+1\right)\left(x-12\right)=0\left(\text{Vì }\left(x-\dfrac{11}{2}\right)^2+\dfrac{159}{4}\ne0\right)\\ \Leftrightarrow\left[{}\begin{matrix}x+1=0\\x-12=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=12\end{matrix}\right.\)

Vậy tập nghiệm phương trình là \(S=\left\{-1;12\right\}\)

\(\text{c) }\left(x+2\right)\left(x+3\right)\left(x-5\right)\left(x-6\right)=180\\ \Leftrightarrow\left(x^2+2x-5x-10\right)\left(x^2+3x-6x-18\right)=180\\ \Leftrightarrow\left(x^2-3x-10\right)\left(x^2-3x-18\right)=180\) Đặt \(x^2-3x-14=t\) \(\Leftrightarrow\left(t+4\right)\left(t-4\right)=180\\ \Leftrightarrow t^2-16-180=0\\ \Leftrightarrow t^2-196=0\\ \Leftrightarrow\left(t+14\right)\left(t-14\right)=0\\ \Leftrightarrow\left(x^2-3x-14+14\right)\left(x^2-3x-14-14\right)=0\\ \Leftrightarrow\left(x^2-3x\right)\left(x^2-3x-28\right)=0\\ \Leftrightarrow x\left(x-3\right)\left(x^2-7x+4x-28\right)=0\\ \Leftrightarrow x\left(x-3\right)\left[x\left(x-7\right)+4\left(x-7\right)\right]=0\\ \Leftrightarrow x\left(x-3\right)\left(x+4\right)\left(x-7\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x-3=0\\x+4=0\\x-7=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=3\\x=-4\\x=7\end{matrix}\right.\) Vậy tập nghiệm phương trình là \(S=\left\{0;3;-4;7\right\}\)
4 tháng 8 2019

\(\frac{3}{x+1}+\frac{2}{x+2}=\frac{5x+4}{x^2+3x+2}.\)ĐKXĐ: \(x\ne-1;-2\)

\(\Leftrightarrow\frac{3\left(x+2\right)}{\left(x+1\right)\left(x+2\right)}+\frac{2\left(x+1\right)}{\left(x+1\right)\left(x+2\right)}=\frac{5x+4}{\left(x+1\right)\left(x+2\right)}\)

\(\Leftrightarrow3x+6+2x+2=5x+4\)

\(\Leftrightarrow3x+2x-5x=-6-2+4\)

\(\Leftrightarrow0x=-4\)

=> PT vô nghiệm 

\(2;\frac{2}{3x-1}-\frac{15}{6x^2-x-1}=\frac{3}{2x-1}\)

\(\Leftrightarrow\frac{2\left(2x-1\right)}{\left(2x-1\right)\left(3x-1\right)}-\frac{15}{6x^2+3x-2x-1}=\frac{3\left(3x-1\right)}{\left(2x-1\right)\left(3x-1\right)}\)

\(\Leftrightarrow\frac{4x-2-15}{\left(2x-1\right)\left(3x-1\right)}=\frac{9x-3}{\left(2x-1\right)\left(3x-1\right)}\)

\(\Leftrightarrow4x-2-15=9x-3\)

\(\Leftrightarrow4x-9x=2+15-3\)

\(\Leftrightarrow-5x=14\)

.....

4 tháng 8 2019

mấy cái này mẫu nào dài cậu phân tích ra : 

VD : câu  3 : \(3x^2-4x+1\)

\(=3x^2-3x-x+1\)

\(=3x\left(x-1\right)-\left(x-1\right)\)

\(=\left(3x-1\right)\left(x-1\right)\)

r bắt đầu giải PHương trình :)) Mấy câu còn lại tương tự 

5 tháng 7 2018

\(a,\left(x+3\right)\left(x-3\right)-\left(x-2\right)\left(x+5\right)=6\)

\(\Leftrightarrow x^2-9-x^2-5x+2x+10=6\)

\(\Leftrightarrow-3x+1=6\Leftrightarrow x=\frac{-5}{3}\)

Vậy x =\(\frac{-5}{3}\)

\(b,\left(3x+2\right)\left(2x+9\right)-\left(x+2\right)\left(6x+1\right)=\left(x+1\right)-\left(x-6\right)\)

\(\Leftrightarrow6x^2+27x+4x+18-6x^2-x-12x-2=x+1-x+6\)

\(\Leftrightarrow18x+16=7\Leftrightarrow x=\frac{-1}{2}\)

Vậy x =\(\frac{-1}{2}\)

5 tháng 7 2018

a/ \(\left(x+3\right)\left(x-3\right)-\left(x-2\right)\left(x+5\right)=6\)

<=> \(x^2-9-\left(x^2+3x-10\right)=6\)

<=> \(x^2-9-x^2-3x+10=6\)

<=> \(-3x+1=6\)

<=> \(-3x=5\)

<=> \(x=-\frac{5}{3}\)

b/ \(\left(3x+2\right)\left(2x+9\right)-\left(x+2\right)\left(6x+1\right)=\left(x+1\right)-\left(x-6\right)\)

<=> \(6x^2+31x+18-\left(6x^2+13x+2\right)=x+1-x+6\)

<=> \(6x^2+31x+18-6x^2-13x-2=7\)

<=> \(18x+16=7\)

<=> \(18x=-9\)

<=> \(x=-\frac{1}{2}\)

3 tháng 7 2018

a) \(4\left(18-5x\right)-12\left(3x-7\right)=15\left(2x-16\right)-6\left(x+14\right)\)

\(\Rightarrow72-20x-36x-84=30x-240-6x+84\)

\(\Rightarrow\left(72-84\right)-\left(20x+36x\right)=\left(30x-6x\right)-240+84\)

\(\Rightarrow-12-56=24x-56x\)

\(\Rightarrow-12+156=24x+56x\)

\(\Rightarrow144=80x\)

\(\Rightarrow x=144:80\)

\(\Rightarrow x=\frac{9}{5}\)

b) \(5\left(3x+5\right)-4\left(2x-3\right)=5x+3\left(2x+12\right)+1\)

\(\Rightarrow15x+25-8x+12=5x+6x+36+1\)

\(\Rightarrow15x+25-8x+12-5x-6x-36-1=0\)

\(\Rightarrow-4x=0\)

\(\Rightarrow-4.0\)

\(\Rightarrow x=0\)

2 tháng 12 2018

à) bằng 1,8

b) bằng 0