Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
$x-1=|2x-1|\geq 0\Rightarrow x\geq 1$
$\Rightarrow 2x-1>0\Rightarrow |2x-1|=2x-1$. Khi đó:
$2x-1=x-1\Leftrightarrow x=0$ (không thỏa mãn vì $x\geq 1$)
Vậy không tồn tại $x$ thỏa đề.
Bài 2:
Nếu $x\geq \frac{1}{3}$ thì:
$3x-1=2x+3$
$\Leftrightarrow x=4$ (tm)
Nếu $x< \frac{1}{3}$ thì:
$1-3x=2x+3$
$\Leftrightarrow -2=5x\Leftrightarrow x=\frac{-2}{5}$ (tm)
Vậy......
\(\left(2x-1\right):\dfrac{10}{7}=\dfrac{28}{15}:\dfrac{4}{3}\)
\(\Rightarrow\left(2x-1\right).\dfrac{7}{10}=\dfrac{28}{15}.\dfrac{3}{4}\)
\(\Rightarrow\left(2x-1\right).\dfrac{7}{10}=\dfrac{7}{5}\)
\(\Rightarrow2x-1=\dfrac{7}{5}:\dfrac{7}{10}\)
\(\Rightarrow2x-1=\dfrac{7}{5}.\dfrac{10}{7}\)
\(\Rightarrow2x-1=2\)
\(\Rightarrow2x=3\)
\(\Rightarrow x=\dfrac{3}{2}\)
c: Ta có: \(\left(x+1\right)^2\ge0\forall x\)
\(\left(y-\dfrac{1}{3}\right)^2\ge0\forall y\)
Do đó: \(\left(x+1\right)^2+\left(y-\dfrac{1}{3}\right)^2\ge0\forall x,y\)
\(\Leftrightarrow\left(x+1\right)^2+\left(y-\dfrac{1}{3}\right)^2-10\ge-10\forall x,y\)
Dấu '=' xảy ra khi x=-1 và \(y=\dfrac{1}{3}\)
b) \(3,8:\left(2x\right)=\frac{1}{4}:\frac{8}{3}\)
= \(3,8:\left(2x\right)=\frac{3}{32}\)
\(\Rightarrow2x=3,8:\frac{3}{32}=\frac{608}{15}\)
\(\Rightarrow x\frac{608}{15}:2=\frac{304}{15}\)
\(\Rightarrow\frac{304}{15}\)
\(2\left(x-3\right)+5⋮x-3\Rightarrow x-3\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)
x-3 | 1 | -1 | 5 | -5 |
x | 4 | 2 | 8 | -2(ktm) |
a)\(3x-\dfrac{2}{5}=0=>3x=\dfrac{2}{5}=>x=\dfrac{2}{15}\)
b)\(\left(x-3\right)\left(2x+8\right)=0=>\left[{}\begin{matrix}x-3=0\\2x=-8\end{matrix}\right.=>\left[{}\begin{matrix}x=3\\x=-4\end{matrix}\right.\)
c)\(3x^2-x-4=0=>3x^2+3x-4x-4=0=>\left(3x-4\right)\left(x+1\right)=0\)
\(=>\left[{}\begin{matrix}3x=4\\x+1=0\end{matrix}\right.=>\left[{}\begin{matrix}x=\dfrac{3}{4}\\x=-1\end{matrix}\right.\)
27:(x-3/2)^3=(x-3/2):3
Ta có: \(\dfrac{27}{\left(x-\dfrac{3}{2}\right)^3}=\dfrac{\left(x-\dfrac{3}{2}\right)}{3}\)
\(\Rightarrow\left(x-\dfrac{3}{2}\right)^3.\left(x-\dfrac{3}{2}\right)\)=27.3
\(\Rightarrow\left(x-\dfrac{3}{2}\right)^4\)=81
\(\Rightarrow\left(x-\dfrac{3}{2}\right)^4=3^4\)
\(\Rightarrow\left[{}\begin{matrix}x-\dfrac{3}{2}=4\\x-\dfrac{3}{2}=-4\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=4+\dfrac{3}{2}\\x=-4+\dfrac{3}{2}\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{8}{2}+\dfrac{3}{2}\\x=\dfrac{-8}{2}+\dfrac{3}{2}\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{11}{2}\\x=\dfrac{-5}{2}\end{matrix}\right.\)
Vậy x∈\(\left\{\dfrac{11}{2};\dfrac{-5}{2}\right\}\)
`@` `\text {Ans}`
`\downarrow`
`3,8 * 2x = 1/4*8/3`
`=> 3,8*2x = 2/3`
`=> 2x = 2/3 \div 3,8`
`=> 2x = 10/57`
`=> x = 10/57 \div 2`
`=> x = 5/57`
Vậy, `x = 5/57.`
bạn có thể làm theo t/c tỉ lệ thức k ạ