\(35.\sqrt{63+x}-x.12=20\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 11 2016

Bài 1:

a) Ta có: \(6=\sqrt{36}< \sqrt{37}\)

Vậy \(6< \sqrt{37}\)

b) Ta có: \(2\sqrt{3}=\sqrt{4}.\sqrt{3}=\sqrt{12}< \sqrt{18}=\sqrt{9}.\sqrt{2}=3\sqrt{2}\)

Vậy \(2\sqrt{3}< 3\sqrt{2}\)

p/s: Bạn có thể lấy số gần mà tính cũng được do mình nghĩ lớp 7 chưa học mà học rồi thì làm cách trên cho nhanh nhé.

c) Ta có: \(\sqrt{63}\approx7,4;\sqrt{35}\approx6\)

\(7,4+6=13,4< 14\Rightarrow\sqrt{63}+\sqrt{35}< 14\)

Câu 2: a) \(\sqrt{x-1}=\frac{1}{2}\Rightarrow\left(\sqrt{x-1}\right)^2=\left(\frac{1}{2}\right)^2\Rightarrow x-1=\frac{1}{4}\Rightarrow x=\frac{5}{4}\)

b) \(\sqrt{\left(x-1\right)^2}=9=\sqrt{81}\Rightarrow\left(x-1\right)^2=81\Rightarrow x-1\in\left\{\pm9\right\}\Rightarrow x\in\left\{10;-8\right\}\)

c) \(2\sqrt{3x-2}=3\Rightarrow\sqrt{3x-2}=\frac{3}{2}=\sqrt{\frac{9}{4}}\Rightarrow3x-2=\frac{9}{4}\Rightarrow x=\frac{17}{12}\)

 

7 tháng 11 2016

bn chờ mk một tí

hà nội k vội dc đâu

25 tháng 11 2019

1.

a) \(x-4\sqrt{x}=0\)

\(\Rightarrow\sqrt{x}.\left(\sqrt{x}-4\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}\sqrt{x}=0\\\sqrt{x}-4=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\\sqrt{x}=0+4\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\\sqrt{x}=4\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=16\end{matrix}\right.\)

Vậy \(x\in\left\{0;16\right\}.\)

b) \(\left|\frac{3}{5}\sqrt{x}-\frac{1}{20}\right|-\frac{3}{4}=\frac{1}{5}\)

\(\Rightarrow\left|\frac{3}{5}\sqrt{x}-\frac{1}{20}\right|=\frac{1}{5}+\frac{3}{4}\)

\(\Rightarrow\left|\frac{3}{5}\sqrt{x}-\frac{1}{20}\right|=\frac{19}{20}.\)

\(\Rightarrow\left[{}\begin{matrix}\frac{3}{5}\sqrt{x}-\frac{1}{20}=\frac{19}{20}\\\frac{3}{5}\sqrt{x}-\frac{1}{20}=-\frac{19}{20}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}\frac{3}{5}\sqrt{x}=1\\\frac{3}{5}\sqrt{x}=-\frac{9}{10}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}\sqrt{x}=1:\frac{3}{5}\\\sqrt{x}=\left(-\frac{9}{10}\right):\frac{3}{5}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\sqrt{x}=\frac{5}{3}\\\sqrt{x}=-\frac{3}{2}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\frac{25}{9}\\x\in\varnothing\end{matrix}\right.\)

Vậy \(x=\frac{25}{9}.\)

Câu c) làm tương tự như câu b).

Chúc bạn học tốt!

3 tháng 4 2020

a. \(x=\sqrt{16}\)\(\Rightarrow x=4\)
Chúc bạn học tốt!

24 tháng 7 2019

a.\(2x^2+5x+8+\sqrt{x}=x^2+3x+35+x^2+2x-7\)

\(=2x^2+5x+8+\sqrt{x}=2x^2+5x+28\Leftrightarrow\sqrt{x}=20\Leftrightarrow x=400.\)

b.\(3\sqrt{x}+7x+5=\sqrt{x}+4x-6+3x+18\)

\(=3\sqrt{x}+7x+5=\sqrt{x}+7x+12\Leftrightarrow2\sqrt{x}=7\Leftrightarrow x=\frac{49}{4}.\)

c.\(8\sqrt{x}+2x-9=5x+7+6\sqrt{x}-3x-12.\)

\(=8\sqrt{x}+2x-9=2x+6\sqrt{x}-5\Leftrightarrow2\sqrt{x}=4\Leftrightarrow x=4.\)

d.\(2\sqrt{3x}+11x-18=5x+3+6\sqrt{3x}+6x-21\)

\(=2\sqrt{3x}+11x-18=11x+6\sqrt{3x}-19\Leftrightarrow4\sqrt{3x}=1\)

\(\Leftrightarrow\sqrt{3x}=\frac{1}{4}\Leftrightarrow3x=\frac{1}{16}\Leftrightarrow x=\frac{1}{48}.\)

24 tháng 7 2019

a) \(2x^2+5x+8+\sqrt{x}=x^2+3x+35+x^2+2x-7\)

<=> \(2x^2+5x+8+\sqrt{x}=2x^2+5x+28\)

<=> \(2x^2+5x+8+\sqrt{x}-\left(2x^2+5\right)=28\)

<=> \(\sqrt{x}+8=28\)

<=> \(\sqrt{x}=28-8\)

<=> \(\sqrt{x}=20\)

<=> \(\left(\sqrt{x}\right)^2=20^2\)

<=> x = 400

=> x = 400

b) \(3\sqrt{x}+7x+5=\sqrt{x}+4x-6+3x+18\)

<=> \(3\sqrt{x}+7x+5=7x+\sqrt{x}+12\)

<=> \(3\sqrt{x}+5=7x+\sqrt{x}+12-7x\)

<=> \(3\sqrt{x}+5=\sqrt{x}+12\)

<=> \(3\sqrt{x}=\sqrt{x}+12-5\)

<=> \(3\sqrt{x}=\sqrt{x}+7\)

<=> \(3\sqrt{x}-\sqrt{x}=7\)

<=> \(2\sqrt{x}=7\)

<=> \(\sqrt{x}=\frac{7}{2}\)

<=> \(\left(\sqrt{x}\right)^2=\left(\frac{7}{2}\right)^2\)

<=> \(x=\frac{49}{4}\)

=> \(x=\frac{49}{4}\)

c) \(8\sqrt{x}+2x-9=5x+7+6\sqrt{x}-3x-12\)

<=> \(8\sqrt{x}+2x-9=2x+6\sqrt{x}-5\)

<=> \(8\sqrt{x}-9=2x+6\sqrt{x}-5-2x\)

<=> \(8\sqrt{x}-9=6\sqrt{x}-5\)

<=> \(8\sqrt{x}=6\sqrt{x}-5+9\)

<=> \(8\sqrt{x}=6\sqrt{x}+4\)

<=> \(8\sqrt{x}-6\sqrt{x}=4\)

<=> \(2\sqrt{x}=4\)

<=> \(\sqrt{x}=2\)

<=> \(\left(\sqrt{x}\right)^2=2^2\)

<=> x = 4

=> x = 4

d) \(2\sqrt{3x}+11x-18=5x+3+6\sqrt{3x}+6x-21\)

<=> \(2\sqrt{3x}+11x-18=11x+6\sqrt{3x}-18\)

<=> \(2\sqrt{3x}+11x-18-\left(11x-18\right)=6\sqrt{3x}\)

<=>\(2\sqrt{3x}=6\sqrt{3x}\)

<=> \(2\sqrt{3x}-6\sqrt{3x}=0\)

<=>\(-4\sqrt{3x}=0\)

<=> \(\sqrt{3x}=0\)

<=> \(\left(\sqrt{3x}\right)^2=0^2\)

<=> 3x = 0

<=> x = 0

=> x = 0

a: \(A=-\sqrt{x+\dfrac{5}{41}}+\dfrac{7}{12}\le\dfrac{7}{12}\)

Dấu '=' xảy ra khi x=-5/41

b: \(B=-\sqrt{x-\dfrac{2}{3}}-\dfrac{5}{13}\le-\dfrac{5}{13}\)

Dấu '=' xảy ra khi x=2/3

13 tháng 11 2016

a) 2|2/3 - x| = 1/2

|2/3 - x| = 1/4

|2/3 - x| = 1/4 hoặc |2/3 - x| = -1/4

Xét 2 TH...

10 tháng 11 2016

a) câu a sai đề em nhé, tử số phải là 6/ 13

tử số em đặt 3 ra ngoài, mẫu số em đặt 11 ra ngoài bên trong ngoặc là hai biểu thức giống nhau, đáp số 3/11

b) 17^18 = (17^3)^6 =4913^6

63^12 =(63^2)^6 =3969^6. giờ thì dễ rồi

c) Vì ( x - √3 )^ 2016 >= 0;  ( y ^2 -3 ) ^ 2018> =0 nên ( x - √3 )^ 2016 + ( y ^2 -3 ) ^ 2018 = 0 khi ( x - √3 )^ 2016 =0 và

 ( y ^2 -3 ) ^ 2018 = 0,  suy ra x = căn 3; y^2 =3 => x =căn 3; y = căn 3 hoặc y = - căn 3

20 tháng 10 2015

à, phần a ra x = 400. Nhầm

25 tháng 11 2019

Bai 1

a) \(\sqrt{0,36}+\sqrt{0,49}=0,6+0,7=1,3\)

b) \(\sqrt{\frac{4}{9}}-\sqrt{\frac{25}{36}}=\frac{2}{3}-\frac{5}{6}\)

=\(-\frac{1}{6}\)

Bài 2

a)\(x^2=81\Rightarrow\left[{}\begin{matrix}x=9\\x=-9\end{matrix}\right.\)

b) \(\left(x-1\right)^2=\frac{9}{16}\)

\(\Rightarrow\left[{}\begin{matrix}x-1=\frac{3}{4}\\x-1=\frac{-3}{4}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\frac{7}{4}\\x=\frac{1}{4}\end{matrix}\right.\)

c) \(x-2\sqrt{x}=0\Rightarrow\sqrt{x}\left(\sqrt{x}-2\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}\sqrt{x}=0\\\sqrt{x}-2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\)

d) \(x=\sqrt{x}\Rightarrow x-\sqrt{x}=0\Rightarrow\sqrt{x}\left(\sqrt{x}-1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}\sqrt{x}=0\\\sqrt{x}-1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)