Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a) Ta có: \(6=\sqrt{36}< \sqrt{37}\)
Vậy \(6< \sqrt{37}\)
b) Ta có: \(2\sqrt{3}=\sqrt{4}.\sqrt{3}=\sqrt{12}< \sqrt{18}=\sqrt{9}.\sqrt{2}=3\sqrt{2}\)
Vậy \(2\sqrt{3}< 3\sqrt{2}\)
p/s: Bạn có thể lấy số gần mà tính cũng được do mình nghĩ lớp 7 chưa học mà học rồi thì làm cách trên cho nhanh nhé.
c) Ta có: \(\sqrt{63}\approx7,4;\sqrt{35}\approx6\)
Mà \(7,4+6=13,4< 14\Rightarrow\sqrt{63}+\sqrt{35}< 14\)
Câu 2: a) \(\sqrt{x-1}=\frac{1}{2}\Rightarrow\left(\sqrt{x-1}\right)^2=\left(\frac{1}{2}\right)^2\Rightarrow x-1=\frac{1}{4}\Rightarrow x=\frac{5}{4}\)
b) \(\sqrt{\left(x-1\right)^2}=9=\sqrt{81}\Rightarrow\left(x-1\right)^2=81\Rightarrow x-1\in\left\{\pm9\right\}\Rightarrow x\in\left\{10;-8\right\}\)
c) \(2\sqrt{3x-2}=3\Rightarrow\sqrt{3x-2}=\frac{3}{2}=\sqrt{\frac{9}{4}}\Rightarrow3x-2=\frac{9}{4}\Rightarrow x=\frac{17}{12}\)
1.
a) \(x-4\sqrt{x}=0\)
\(\Rightarrow\sqrt{x}.\left(\sqrt{x}-4\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}\sqrt{x}=0\\\sqrt{x}-4=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\\sqrt{x}=0+4\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\\sqrt{x}=4\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=16\end{matrix}\right.\)
Vậy \(x\in\left\{0;16\right\}.\)
b) \(\left|\frac{3}{5}\sqrt{x}-\frac{1}{20}\right|-\frac{3}{4}=\frac{1}{5}\)
\(\Rightarrow\left|\frac{3}{5}\sqrt{x}-\frac{1}{20}\right|=\frac{1}{5}+\frac{3}{4}\)
\(\Rightarrow\left|\frac{3}{5}\sqrt{x}-\frac{1}{20}\right|=\frac{19}{20}.\)
\(\Rightarrow\left[{}\begin{matrix}\frac{3}{5}\sqrt{x}-\frac{1}{20}=\frac{19}{20}\\\frac{3}{5}\sqrt{x}-\frac{1}{20}=-\frac{19}{20}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}\frac{3}{5}\sqrt{x}=1\\\frac{3}{5}\sqrt{x}=-\frac{9}{10}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}\sqrt{x}=1:\frac{3}{5}\\\sqrt{x}=\left(-\frac{9}{10}\right):\frac{3}{5}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\sqrt{x}=\frac{5}{3}\\\sqrt{x}=-\frac{3}{2}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\frac{25}{9}\\x\in\varnothing\end{matrix}\right.\)
Vậy \(x=\frac{25}{9}.\)
Câu c) làm tương tự như câu b).
Chúc bạn học tốt!
a.\(2x^2+5x+8+\sqrt{x}=x^2+3x+35+x^2+2x-7\)
\(=2x^2+5x+8+\sqrt{x}=2x^2+5x+28\Leftrightarrow\sqrt{x}=20\Leftrightarrow x=400.\)
b.\(3\sqrt{x}+7x+5=\sqrt{x}+4x-6+3x+18\)
\(=3\sqrt{x}+7x+5=\sqrt{x}+7x+12\Leftrightarrow2\sqrt{x}=7\Leftrightarrow x=\frac{49}{4}.\)
c.\(8\sqrt{x}+2x-9=5x+7+6\sqrt{x}-3x-12.\)
\(=8\sqrt{x}+2x-9=2x+6\sqrt{x}-5\Leftrightarrow2\sqrt{x}=4\Leftrightarrow x=4.\)
d.\(2\sqrt{3x}+11x-18=5x+3+6\sqrt{3x}+6x-21\)
\(=2\sqrt{3x}+11x-18=11x+6\sqrt{3x}-19\Leftrightarrow4\sqrt{3x}=1\)
\(\Leftrightarrow\sqrt{3x}=\frac{1}{4}\Leftrightarrow3x=\frac{1}{16}\Leftrightarrow x=\frac{1}{48}.\)
a) \(2x^2+5x+8+\sqrt{x}=x^2+3x+35+x^2+2x-7\)
<=> \(2x^2+5x+8+\sqrt{x}=2x^2+5x+28\)
<=> \(2x^2+5x+8+\sqrt{x}-\left(2x^2+5\right)=28\)
<=> \(\sqrt{x}+8=28\)
<=> \(\sqrt{x}=28-8\)
<=> \(\sqrt{x}=20\)
<=> \(\left(\sqrt{x}\right)^2=20^2\)
<=> x = 400
=> x = 400
b) \(3\sqrt{x}+7x+5=\sqrt{x}+4x-6+3x+18\)
<=> \(3\sqrt{x}+7x+5=7x+\sqrt{x}+12\)
<=> \(3\sqrt{x}+5=7x+\sqrt{x}+12-7x\)
<=> \(3\sqrt{x}+5=\sqrt{x}+12\)
<=> \(3\sqrt{x}=\sqrt{x}+12-5\)
<=> \(3\sqrt{x}=\sqrt{x}+7\)
<=> \(3\sqrt{x}-\sqrt{x}=7\)
<=> \(2\sqrt{x}=7\)
<=> \(\sqrt{x}=\frac{7}{2}\)
<=> \(\left(\sqrt{x}\right)^2=\left(\frac{7}{2}\right)^2\)
<=> \(x=\frac{49}{4}\)
=> \(x=\frac{49}{4}\)
c) \(8\sqrt{x}+2x-9=5x+7+6\sqrt{x}-3x-12\)
<=> \(8\sqrt{x}+2x-9=2x+6\sqrt{x}-5\)
<=> \(8\sqrt{x}-9=2x+6\sqrt{x}-5-2x\)
<=> \(8\sqrt{x}-9=6\sqrt{x}-5\)
<=> \(8\sqrt{x}=6\sqrt{x}-5+9\)
<=> \(8\sqrt{x}=6\sqrt{x}+4\)
<=> \(8\sqrt{x}-6\sqrt{x}=4\)
<=> \(2\sqrt{x}=4\)
<=> \(\sqrt{x}=2\)
<=> \(\left(\sqrt{x}\right)^2=2^2\)
<=> x = 4
=> x = 4
d) \(2\sqrt{3x}+11x-18=5x+3+6\sqrt{3x}+6x-21\)
<=> \(2\sqrt{3x}+11x-18=11x+6\sqrt{3x}-18\)
<=> \(2\sqrt{3x}+11x-18-\left(11x-18\right)=6\sqrt{3x}\)
<=>\(2\sqrt{3x}=6\sqrt{3x}\)
<=> \(2\sqrt{3x}-6\sqrt{3x}=0\)
<=>\(-4\sqrt{3x}=0\)
<=> \(\sqrt{3x}=0\)
<=> \(\left(\sqrt{3x}\right)^2=0^2\)
<=> 3x = 0
<=> x = 0
=> x = 0
a: \(A=-\sqrt{x+\dfrac{5}{41}}+\dfrac{7}{12}\le\dfrac{7}{12}\)
Dấu '=' xảy ra khi x=-5/41
b: \(B=-\sqrt{x-\dfrac{2}{3}}-\dfrac{5}{13}\le-\dfrac{5}{13}\)
Dấu '=' xảy ra khi x=2/3
a) 2|2/3 - x| = 1/2
|2/3 - x| = 1/4
|2/3 - x| = 1/4 hoặc |2/3 - x| = -1/4
Xét 2 TH...
a) câu a sai đề em nhé, tử số phải là 6/ 13
tử số em đặt 3 ra ngoài, mẫu số em đặt 11 ra ngoài bên trong ngoặc là hai biểu thức giống nhau, đáp số 3/11
b) 17^18 = (17^3)^6 =4913^6
63^12 =(63^2)^6 =3969^6. giờ thì dễ rồi
c) Vì ( x - √3 )^ 2016 >= 0; ( y ^2 -3 ) ^ 2018> =0 nên ( x - √3 )^ 2016 + ( y ^2 -3 ) ^ 2018 = 0 khi ( x - √3 )^ 2016 =0 và
( y ^2 -3 ) ^ 2018 = 0, suy ra x = căn 3; y^2 =3 => x =căn 3; y = căn 3 hoặc y = - căn 3
Bai 1
a) \(\sqrt{0,36}+\sqrt{0,49}=0,6+0,7=1,3\)
b) \(\sqrt{\frac{4}{9}}-\sqrt{\frac{25}{36}}=\frac{2}{3}-\frac{5}{6}\)
=\(-\frac{1}{6}\)
Bài 2
a)\(x^2=81\Rightarrow\left[{}\begin{matrix}x=9\\x=-9\end{matrix}\right.\)
b) \(\left(x-1\right)^2=\frac{9}{16}\)
\(\Rightarrow\left[{}\begin{matrix}x-1=\frac{3}{4}\\x-1=\frac{-3}{4}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\frac{7}{4}\\x=\frac{1}{4}\end{matrix}\right.\)
c) \(x-2\sqrt{x}=0\Rightarrow\sqrt{x}\left(\sqrt{x}-2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}\sqrt{x}=0\\\sqrt{x}-2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\)
d) \(x=\sqrt{x}\Rightarrow x-\sqrt{x}=0\Rightarrow\sqrt{x}\left(\sqrt{x}-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}\sqrt{x}=0\\\sqrt{x}-1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)
\(x=23,4\)