Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=1+\frac{x+3}{x^2+5x+6}:\left(\frac{8x^2}{4x^3-8x^2}-\frac{3x}{3x^2-12}-\frac{1}{x+2}\right)\)
\(P=1+\frac{x+3}{\left(x+3\right)\left(x+2\right)}:\left(\frac{8x^2}{4x^3-8x^2}-\frac{3x}{3\left(x^2-4\right)}-\frac{1}{x+2}\right)\)
\(P=1+\frac{1}{x+2}:\left(\frac{4x^2.2}{4x^2\left(x-2\right)}-\frac{x}{\left(x+2\right)\left(x-2\right)}-\frac{1}{x+2}\right)\)
\(P=1+\frac{1}{x+2}:\left(\frac{2}{x-2}-\frac{x}{\left(x+2\right)\left(x-2\right)}-\frac{x-2}{\left(x+2\right)\left(x-2\right)}\right)\)
\(P=1+\frac{1}{x+2}:\left(\frac{2x+4-x-x+2}{\left(x+2\right)\left(x-2\right)}\right)\)
\(P=1+\frac{1}{x+2}:\frac{6}{\left(x+2\right)\left(x-2\right)}=1+\frac{\left(x+2\right)\left(x-2\right)}{6\left(x+2\right)}=1+\frac{x-2}{6}\)
\(=\frac{x+4}{6}.P=0\Leftrightarrow x=-4\)
\(P>0\Leftrightarrow x>-4\)
a: \(A=-x^2-4x-2\)
\(=-x^2-4x-4+2\)
\(=-\left(x^2+4x+4\right)+2\)
\(=-\left(x+2\right)^2+2< =2\forall x\)
Dấu '=' xảy ra khi x+2=0
=>x=-2
b: \(B=-2x^2-3x+5\)
\(=-2\left(x^2+\dfrac{3}{2}x-\dfrac{5}{2}\right)\)
\(=-2\left(x^2+2\cdot x\cdot\dfrac{3}{4}+\dfrac{9}{16}-\dfrac{49}{16}\right)\)
\(=-2\left(x+\dfrac{3}{4}\right)^2+\dfrac{49}{8}< =\dfrac{49}{8}\forall x\)
Dấu '=' xảy ra khi \(x+\dfrac{3}{4}=0\)
=>\(x=-\dfrac{3}{4}\)
c: \(C=\left(2-x\right)\left(x+4\right)\)
\(=2x+8-x^2-4x\)
\(=-x^2-2x+8\)
\(=-x^2-2x-1+9\)
\(=-\left(x^2+2x+1\right)+9\)
\(=-\left(x+1\right)^2+9< =9\forall x\)
Dấu '=' xảy ra khi x+1=0
=>x=-1
d: \(D=-8x^2+4xy-y^2+3\)
\(=-8\left(x^2-\dfrac{1}{2}xy\right)-y^2+3\)
\(=-8\left(x^2-2\cdot x\cdot\dfrac{1}{4}y+\dfrac{1}{16}y^2\right)+\dfrac{1}{2}y^2-y^2+3\)
\(=-8\left(x-\dfrac{1}{4}y\right)^2-y^2+3< =3\forall x,y\)
Dấu '=' xảy ra khi y=0 và x-1/4y=0
=>y=0 và x=0
\(\left(\frac{x^2+3x}{x^3+3x^2+9x+27}+\frac{3}{x^2+9}\right):\left(\frac{1}{x-3}-\frac{6x}{x^3-3x^2+9x-27}\right)\)
\(=\left(\frac{x\left(x+3\right)}{\left(x+3\right)\left(x^2+9\right)}+\frac{3}{x^2+9}\right):\left(\frac{1}{x-3}-\frac{6x}{\left(x-3\right)\left(x^2+9\right)}\right)\)
\(=\left(\frac{x}{x^2+9}+\frac{3}{x^2+9}\right):\left(\frac{x^2+9-6x}{\left(x-3\right)\left(x^2+9\right)}\right)=\frac{x+3}{x^2+9}:\frac{x^2+9-6x}{\left(x-3\right)\left(x^2+9\right)}\)
\(=\frac{\left(x+3\right)\left(x-3\right)\left(x^2+9\right)}{\left(x^2+9\right)\left(x^2-6x+9\right)}=\frac{\left(x+3\right)\left(x-3\right)}{\left(x-3\right)\left(x-3\right)}=\frac{x+3}{x-3}\)
b) \(Voix>0\Rightarrow P\ne\varnothing\)(mk ko chac)
c) \(P\inℤ\Leftrightarrow x+3⋮x-3\Leftrightarrow x-3\in\left\{-1;-2;-3;-6;1;2;3;6\right\}\)
sau do tinh
cau nay la toan lp 8 nha
(2x+1)+(2x+2)+...+(2x+2015)=0
Vì cứ 1 số hạng lại có 2x
Số số hạng từ 1 đến 2015 là:
(2015-1):1+1=2015(số)
Tổng dãy số là:
(2015+1)x2015:2=2031120
Do đó có 2015 2x
Ta có:
(2x+1)+(2x+2)+...+(2x+2015)=0
2015.2x+(1+2+...+2015)=0
4030x+2031120=0
4030x=-2031120
x=-2031120:4030
x=-504
Vậy x=-504
\(2x^3-8x^2+9x=0\)
\(\Leftrightarrow x\left(2x^2-8x+9\right)=0\)
TH1 : x = 0
TH2 : Ta có : \(\left(-8\right)^2-4.2.9=64-72< 0\)
Nên phương trình vô nghiệm
Vậy phương trình có nghiệm là x = 0
Ồ khó thế
à tiện hỏi là có bạn nào bắn free fire ko.
rank gì
tên ních là gì