K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 2 2020

Ta có : \(2x^2+x+8=0\)

         \(x.\left(2x+1\right)\)\(+8=0\)

          \(x.\left(2x+1\right)=-8\)  

 suy ra : x , 2x+1 thuộc ước của 8 .Mà 2x+1 chia 2 dư 1

 cậu tự làm tiếp nhé

5 tháng 9 2020

a. \(x\left(x-2\right)-x\left(x-1\right)\left(x-3\right)=0\)

\(\Leftrightarrow x^2-2x-x^3+4x^2-3x=0\)

\(\Leftrightarrow-x^3+5x^2-5x=0\)

\(\Leftrightarrow-x\left(x^2-5x+5\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}-x=0\\x^2-5x+5=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\\left(x-\frac{5}{2}\right)^2-\frac{5}{4}=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\\left(x-\frac{5}{2}\right)^2=\frac{5}{4}\end{cases}\Leftrightarrow}\hept{\begin{cases}x=0\\x-\frac{5}{2}=\frac{\sqrt{5}}{2}\\x-\frac{5}{2}=-\frac{\sqrt{5}}{2}\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=0\\x=\frac{5+\sqrt{5}}{2}\\x=\frac{5-\sqrt{5}}{2}\end{cases}}\)

5 tháng 9 2020

a) \(x\left(x-2\right)-x\left(x-1\right)\left(x-3\right)=0\)

\(\Leftrightarrow x\left(x-2-x^2+4x-3\right)=0\)

\(\Leftrightarrow x\left(-x^2+5x-5\right)=0\)

\(\Leftrightarrow x\left(x-\frac{5+\sqrt{5}}{2}\right)\left(x-\frac{5-\sqrt{5}}{2}\right)=0\)

=> \(x\in\left\{0;\frac{5+\sqrt{5}}{2};\frac{5-\sqrt{5}}{2}\right\}\)

b) \(\left(2x-5\right)\left(x+3\right)-\left(x-1\right)\left(2x+3\right)=0\)

\(\Leftrightarrow2x^2+x-15-2x^2-x+3=0\)

\(\Leftrightarrow-12=0\left(vn\right)\)

c) \(\left(x-2\right)\left(x^2+2x+8\right)-x^3-2x+1=0\)

\(\Leftrightarrow x^3+4x-16-x^3-2x+1=0\)

\(\Leftrightarrow2x=15\)

\(\Rightarrow x=\frac{15}{2}\)

21 tháng 7 2020

a) ( x - 3 )2 - 4 = 0

<=> ( x - 3 )2 = 4

<=> \(\orbr{\begin{cases}\left(x-3\right)^2=2^2\\\left(x-3\right)^2=\left(-2\right)\end{cases}}\)

<=> \(\orbr{\begin{cases}x-3=2\\x-3=-2\end{cases}}\)

<=> \(\orbr{\begin{cases}x=5\\x=1\end{cases}}\)

Vậy S = { 5 ; 1 }

b) x2 - 9 = 0

<=> x2 = 9

<=> \(\orbr{\begin{cases}x^2=3^2\\x^2=\left(-3\right)^2\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=3\\x=-3\end{cases}}\)

Vậy S = { 3 ; -3 }

c) x( x - 2x ) - x2 - 8 = 0

<=> x2 - 2x2 - x2 - 8 = 0

<=> -2x2 - 8 = 0

<=> -2x2 = 8

<=> x2 = -4 ( vô lí )

<=> x = \(\varnothing\)

Vậy S = { \(\varnothing\)}

21 tháng 7 2020

d) 2x( x - 1 ) - 2x2 + x - 5 = 0

<=> 2x2 - 2x - 2x2 + x - 5 = 0

<=> -x - 5 = 0

<=> -x = 5

<=> x = -5

Vậy S = { -5 }

e) x( x - 3 ) - ( x + 1 )( x - 2 ) = 0 

<=> x2 - 3x - ( x2 - x - 2 ) = 0

<=> x2 - 3x - x2 + x + 2 = 0

<=> - 2x + 2 = 0

<=> -2x = -2

<=> x = 1

Vậy S = { 1 }

f) x( 3x - 1 ) - 3x2 - 7x = 0

<=> 3x2 - x - 3x2 - 7x = 0

<=> -8x = 0

<=> x = 0

Vậy S = { 0 } 

9 tháng 11 2017

Ta có : 3x(2x - 7) - (6x + 1)(x - 15) - 2010 = 0

=> 6x2 - 21x - (6x+ x - 90x - 15) - 2010 = 0

=> 6x2 - 21x - 6x2 + 89x + 15 - 2010 = 0

=> 68x - 1995 = 0

 ? 

b) 2x(x - 2012) - x + 2012 = 0

=> 2x(x - 2012) - (x - 2012) = 0

=> (x - 2012) (2x - 1) = 0

⇔[

x−2012=0
2x−1=0

⇔[

x=2012
2x=1

⇔[

x=2012
x=12 

Vậy x = {2012;12 }

Ta có : 3x(2x - 7) - (6x + 1)(x - 15) - 2010 = 0

=> 6x2 - 21x - (6x+ x - 90x - 15) - 2010 = 0

=> 6x2 - 21x - 6x2 + 89x + 15 - 2010 = 0

=> 68x - 1995 = 0

 ? 

b) 2x(x - 2012) - x + 2012 = 0

=> 2x(x - 2012) - (x - 2012) = 0

=> (x - 2012) (2x - 1) = 0

\(\Leftrightarrow\orbr{\begin{cases}x-2012=0\\2x-1=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=2012\\2x=1\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=2012\\x=\frac{1}{2}\end{cases}}\)

Vậy x = \(\left\{2012;\frac{1}{2}\right\}\)

25 tháng 10 2016

Tìm x

a) \(\left(x+1\right)\left(x+2\right)-x^2-x=0\)

\(\Leftrightarrow\left(x+1\right)\left(x+2\right)-x\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x+2-x\right)=0\)

\(\Leftrightarrow2\left(x+1\right)=0\)

\(\Leftrightarrow x+1=0\Leftrightarrow x=-1\)

b) \(2x^2+5x-3=0\)

\(\Leftrightarrow2x^2+6x-x-3=0\)

\(\Leftrightarrow2x\left(x+3\right)-\left(x+3\right)=0\)

\(\Leftrightarrow\left(2x-1\right)\left(x+3\right)=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}x=\frac{1}{2}\\x=-3\end{array}\right.\)

 

18 tháng 8 2019

\(a,\left(x+8\right)\left(x+6\right)-x^2=104\)

\(\Rightarrow x^2+14x+48-x^2=104\)

\(\Rightarrow14x=56\)

\(\Rightarrow x=4\)

Vậy x=4  

8 tháng 12 2017

a) \(\left(x-1\right)\left(2x+3\right)-x\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(2x+3-x\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+3\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x-1=0\\x+3=0\end{cases}\Rightarrow\orbr{\begin{cases}x=1\\x=-3\end{cases}}}\)

Vậy \(x=1;-3\)

b) \(x^2-4x+8=2x-1\)

\(\Leftrightarrow x^2-4x+8-2x+1=0\)

\(\Leftrightarrow x^2-6x+9=0\)

\(\Leftrightarrow\left(x-3\right)^2=0\)

\(\Leftrightarrow x-3=0\)

\(\Leftrightarrow x=3\)

Vậy x=3

9 tháng 12 2017

a)    \(\left(x-1\right)\left(2x+3\right)-x\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(2x+3-x\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+3\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x-1=0\\x+3=0\end{cases}\Rightarrow\orbr{\begin{cases}x=1\\x=-3\end{cases}}}\)

Vậy \(x=1;-3\)

b)    \(x^2-4x+8=2x-1\)

\(\Leftrightarrow x^2-4x+8-2x+1=0\)

\(\Leftrightarrow x^2-6x+9=0\)

\(\Leftrightarrow\left(x-3\right)^2=0\)

\(\Leftrightarrow x-3=0\)

\(\Leftrightarrow x=3\)

Vậy \(x=3\)