Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\frac{x}{3}=\frac{y}{5}=t\Rightarrow x=3t,y=5t\)
Ta có: \(x^2+y^2=136\)
\(\Rightarrow\left(3t\right)^2+\left(5t\right)^2=136\)
\(\Rightarrow9t^2+25t^2=136\)
\(\Rightarrow34t^2=136\Rightarrow t^2=4\Rightarrow\orbr{\begin{cases}t=2\\t=-2\end{cases}}\)
Nếu \(t=2\Rightarrow\hept{\begin{cases}x=3.2=6\\y=5.2=10\end{cases}}\)
Nếu \(t=-2\Rightarrow\hept{\begin{cases}x=3.\left(-2\right)=-6\\y=5.\left(-2\right)=-10\end{cases}}\)
Vậy \(\left(x;y\right)\in\left\{\left(6;10\right),\left(-6;-10\right)\right\}\)
1.b) \(\left(\left|x\right|-3\right)\left(x^2+4\right)< 0\)
\(\Rightarrow\hept{\begin{cases}\left|x\right|-3\\x^2+4\end{cases}}\) trái dấu
\(TH1:\hept{\begin{cases}\left|x\right|-3< 0\\x^2+4>0\end{cases}}\Leftrightarrow\hept{\begin{cases}\left|x\right|< 3\\x^2>-4\end{cases}}\Leftrightarrow x\in\left\{0;\pm1;\pm2\right\}\)
\(TH1:\hept{\begin{cases}\left|x\right|-3>0\\x^2+4< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}\left|x\right|>3\\x^2< -4\end{cases}}\Leftrightarrow x\in\left\{\varnothing\right\}\)
Vậy \(x\in\left\{0;\pm1;\pm2\right\}\)
a. Em lập bảng xét trường hợp. Tham khảo lik bên dưới nhé!
Câu hỏi của Nguyễn Thị Ngọc Ánh - Toán lớp 7 - Học toán với OnlineMath
b) Có: VT \(\ge\)0 => VP \(\ge\)0 => 4x \(\ge\)0 => x \(\ge\)0
Khi đó: | x+ 2 | = x + 2 ; | x + 3/5 | = x + 3/5; | x + 1/2 | = x + 1/2
Do đó:
\(|x+2|+|x+\frac{3}{5}|+|x+\frac{1}{2}|=4x\)
\(x+2+x+\frac{3}{5}+x+\frac{1}{2}=4x\)
\(3x+\frac{31}{10}=4x\)
\(x=\frac{31}{10}\)
c) Câu c chia trường hợp giống câu a.
d. \(|x^2.|2x-\frac{3}{4}||=x^2\)
\(x^2\left|2x-\frac{3}{4}\right|=x^2\)
\(x^2\left|2x-\frac{3}{4}\right|-x^2=0\)
\(x^2\left(\left|2x-\frac{3}{4}\right|-1\right)=0\)
TH1: \(x^2=0\)hay x = 0.
TH2: \(\left|2x-\frac{3}{4}\right|-1=0\)
\(\left|2x-\frac{3}{4}\right|=1\)
\(\orbr{\begin{cases}2x-\frac{3}{4}=1\\2x-\frac{3}{4}=-1\end{cases}}\)
\(\orbr{\begin{cases}2x=\frac{7}{4}\\2x=-\frac{1}{4}\end{cases}}\)
\(\orbr{\begin{cases}x=\frac{7}{8}\\x=-\frac{1}{8}\end{cases}}\)
Vậy x =0 ; x =7/8 ; x= - 1/ 8.
\(2x+2^{x+3}=136\)
\(\Rightarrow2x+2^x.8=136\)
\(\Rightarrow2\left(x+2^x.4\right)=136\)
\(\Rightarrow x+2^x.4=68\)
\(\Rightarrow x+2^{x+2}=68\)
Vậy \(2^{x+2}\in\left(1;2;4;8;16;32;64\right)\)
\(\Rightarrow x\in\left(-2;-1;0;1;2;3;4\right)\)
Chỉ có \(x=4\)thỏa mãn đề bài
2X+\(^{2^{X+3}}\)=136
X=4