Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2x-8x^2=0\Rightarrow2x\left(1-4x\right)=0\Rightarrow\orbr{\begin{cases}2x=0\\1-4x=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{1}{4}\end{cases}}}\)
\(x-x^2=0\Rightarrow x\left(1-x\right)=0\Rightarrow\orbr{\begin{cases}x=0\\1-x=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}}\)
Cn lại lm tương tự nha e!
=.= hok tốt!!
\(a,x=3x^2\Rightarrow x-3x^2=0\Rightarrow x\left(1-3x\right)=0\Rightarrow\orbr{\begin{cases}x=0\\1-3x=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{1}{3}\end{cases}}\)
\(b,\left(2x-6\right)\left(x+4\right)+2\left(2x-6\right)=0\)
\(\Rightarrow\left(2x-6\right)\left(x+4+2\right)=0\)
\(\Rightarrow\left(2x-6\right)\left(x+6\right)=0\)
\(\Rightarrow\orbr{\begin{cases}2x-6=0\\x+6=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=3\\x=-6\end{cases}}\)
\(c,\left(2x-5\right)\left(x+9\right)+6x-15=0\)
\(\Rightarrow\left(2x-5\right)\left(x+9\right)+3\left(2x-5\right)=0\)
\(\Rightarrow\left(2x-5\right)\left(x+9+3\right)=0\)
\(\Rightarrow\left(2x-5\right)\left(x+12\right)=0\)
\(\Rightarrow\orbr{\begin{cases}2x-5=0\\x+12=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{5}{2}\\x=-12\end{cases}}\)
Ta có : (2x + 1)3 = 125
=> (2x + 1)3 = 53
=> 2x + 1 = 5
=> 2x = 4
=> x = 2
Ta có : (4x - 1)2 = 25 x 9
=> (4x - 1)2 = 52.32
=> (4x - 1)2 = 152
\(\Leftrightarrow\orbr{\begin{cases}4x-1=15\\4x-1=-15\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}4x=16\\4x=-14\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=4\\x=-\frac{7}{2}\end{cases}}\)
a) Để(x^2-1).(2x-6)=0 thì 2x-6=0 suy ra x=3 và x^2-1=0 suy ra x=-1 hoặc 1
a) \(\left(x^2-1\right)\left(2x-6\right)=0\)
\(\Rightarrow\left[\begin{array}{nghiempt}x^2-1=0\\2x-6=0\end{array}\right.\) \(\Rightarrow\left[\begin{array}{nghiempt}x^2=1\\2x=6\end{array}\right.\)
\(\Rightarrow\left[\begin{array}{nghiempt}x=1\\x=3\end{array}\right.\)
Vậy \(x\in\left\{1;3\right\}\)
b) \(2x+3x-x-24=16\)
\(\Rightarrow2x+3x-x=16+24\)
\(\Rightarrow4x=40\)
\(\Rightarrow x=40:4=10\)
Vậy x = 10
c) \(\left(x^2+1\right)\left(x-5\right)\left(x-1\right)=0\)
\(\Rightarrow\left[\begin{array}{nghiempt}x^2+1=0\\x-5=0\\x-1=0\end{array}\right.\) \(\Rightarrow\left[\begin{array}{nghiempt}x^2=-1\\x=0+5\\x=0+1\end{array}\right.\)
\(\Rightarrow\left[\begin{array}{nghiempt}x\in\phi\\x=5\\x=1\end{array}\right.\)
Vậy \(x\in\left\{1;5\right\}\)
a) \(\left(x^2-1\right).\left(2x-6\right)=0\)
\(\Rightarrow\left(x^2-1\right).2\left(x-3\right)=0\)
\(\Rightarrow\left(x^2-1\right).\left(x-3\right)=0\)
\(\Rightarrow x^2-1=0\) hoặc \(x-3=0\)
+) \(x^2-1=0\Rightarrow x^2=1\Rightarrow x=1\) hoặc \(x=-1\)
+) \(x-3=0\Rightarrow x=3\)
Vậy \(x\in\left\{1;-1;3\right\}\)
b) \(2x+3x-x-24=14\)
\(\Rightarrow4x=40\)
\(\Rightarrow x=10\)
Vậy x = 10
c) \(\left(x^2+1\right).\left(x-5\right)\left(x-1\right)=0\)
\(\Rightarrow x^2+1=0\) hoặc \(x-5=0\) hoặc \(x-1=0\)
+) \(x^2+1=0\Rightarrow x^2=-1\) ( vô lí )
+) \(x-5=0\Rightarrow x=5\)
+) \(x-1=0\Rightarrow x=1\)
Vậy \(x\in\left\{5;1\right\}\)
\(2x\left(2x-6\right)\left(3x-15\right)\left(x^2+1\right)=0\)
=> TH1: \(2x=0\Rightarrow x=0\)
TH2: \(2x-6=0\Rightarrow2x=6\Rightarrow x=3\)
TH3: \(3x-15=0\Rightarrow3x=15\Rightarrow x=5\)
TH4: \(x^2+1=0\Rightarrow x^2=-1\) ( vô lý => loại )
Vậy: x = 0 hoặc x = 3 hoặc x = 5