K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 3 2020

\(2x^2+100x-10000=0\)

\(\Leftrightarrow2x^2+200x-100x-10000=0\)

\(\Leftrightarrow2x\left(x+100\right)-100\left(x+100\right)=0\)

\(\Leftrightarrow\left(2x-100\right)\left(x+100\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}2x-100=0\\x+100=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=50\\x=-100\end{cases}}\)

12 tháng 3 2018

Đáp án B

Ta có  a = − 8 ; b = 100 ; c = 40 m   ⇒ b ' = 50

Δ ' = b ' 2 − a c = 50 2 − − 8 .40 m = 2500 + 320 m

Để phương trình có một nghiệm thì  Δ ' = 0

⇔ 2500 + 320 m = 0

⇔ m = − 16 125

26 tháng 4 2019

Đáp án B

Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

NV
22 tháng 2 2021

\(\Delta=\left(m+4\right)^2-4\left(3m+3\right)=m^2-4m+4=\left(m-2\right)^2\ge0\) ; \(\forall m\)

\(\Rightarrow\) Phương trình đã cho luôn có nghiệm với mọi m

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=m+4\\x_1x_2=3m+3\end{matrix}\right.\)

\(x_1^2-x_1=x_2-x_2^2+8\)

\(\Leftrightarrow x_1^2+x_2^2-\left(x_1+x_2\right)-8=0\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2-\left(x_1+x_2\right)-8=0\)

\(\Leftrightarrow\left(m+4\right)^2-2\left(3m+3\right)-\left(m+4\right)-8=0\)

\(\Leftrightarrow m^2+m-2=0\Rightarrow\left[{}\begin{matrix}m=1\\m=-2\end{matrix}\right.\)

20 tháng 4 2022

x2 - (m-1)x + 2m-6 = 0 

a)xét delta 

(m-1)2 - 4(2m-6) = m2 - 2m + 1 - 8m + 24 

= m- 10m + 25 = (m-5)2 ≥ 0 

=> pt luôn có 2 nghiệm với mọi m thuộc R 

b) theo Vi-ét ta có 

\(\left\{{}\begin{matrix}x1+x2=m-1\\x1x2=2m-6\end{matrix}\right.\)

theo đề ta có \(A=\dfrac{2x1}{x2}+\dfrac{2x2}{x1}\)  đk: m ≠ 3 

A = \(\dfrac{2x1^2+2x2^2}{x1x2}=\dfrac{2\left(\left(x1+x2\right)^2-2x1x2\right)}{2m-6}\)

A=\(\dfrac{m^2-6m+25}{m-3}\)

để A có giá trị nguyên thì m2 - 6m + 25 ⋮ m - 3 

m2 - 6m + 9 + 16 ⋮ m - 3 

(m-3)2 + 16 ⋮ m-3 

16 ⋮ m - 3 => m-3 thuộc ước của 16 

U(16) = { - 16; - 8; - 4; -2 ; -1 ; 1 ; 2; 4; 8; 16 }

=> m- 3 =  { - 16; - 8; - 4; -2 ; -1 ; 1 ; 2; 4; 8; 16 }

m = { - 13 ; -5 ; -1; 1; 2; 4; 5; 7; 11; 19 }

12 tháng 4 2016

\(\Delta=100^2-4\cdot8\cdot9=9712>0\Rightarrow\) phương trình đã cho có 2 nghiệm phân biệt

X1=\(\frac{-100+\sqrt{9712}}{2\cdot9}\)

X2=\(\frac{-100-\sqrt{9712}}{2\cdot9}\)