![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
1.
PT \(\Leftrightarrow (x+2)(x-3)(x-4)(x+6)=16x^2\)
\(\Leftrightarrow [(x+2)(x+6)][(x-3)(x-4)]=16x^2\)
\(\Leftrightarrow (x^2+8x+12)(x^2-7x+12)=16x^2\)
\(\Leftrightarrow (a+8x)(a-7x)=16x^2\) (đặt \(x^2+12=a\) )
\(\Leftrightarrow a^2+ax-72x^2=0\)
\(\Leftrightarrow (a-8x)(a+9x)=0\Rightarrow \left[\begin{matrix} a-8x=0\\ a+9x=0\end{matrix}\right.\)
Nếu \(a-8x=0\Leftrightarrow x^2+12-8x=0\Leftrightarrow (x-2)(x-6)=0\Rightarrow \left[\begin{matrix} x=2\\ x=6\end{matrix}\right.\)
Nếu \(a+9x=0\Leftrightarrow x^2+12+9x=0\Leftrightarrow x=\frac{-9\pm \sqrt{33}}{2}\)
Vậy...........
2.
PT \(\Leftrightarrow [(4x+7)(2x+1)][(4x+5)(x+1)]=9\)
\(\Leftrightarrow (8x^2+18x+7)(4x^2+9x+5)=9\)
\(\Leftrightarrow (2a+7)(a+5)=9\) (đặt \(a=4x^2+9x\) )
\(\Leftrightarrow 2a^2+17a+26=0\)
\(\Leftrightarrow (a+2)(2a+13)=0 \)\(\Rightarrow \left[\begin{matrix} a+2=0\\ 2a+13=0\end{matrix}\right.\)
Nếu \(a+2=0\Leftrightarrow 4x^2+9x+2=0\Leftrightarrow (4x+1)(x+2)=0\)
\(\Rightarrow \left[\begin{matrix} x=\frac{-1}{4}\\ x=-2\end{matrix}\right.\)
Nếu \(2a+13=0\Leftrightarrow 8x^2+18x+13=0\) (pt này dễ thấy vô nghiệm)
Vậy.........
![](https://rs.olm.vn/images/avt/0.png?1311)
(x3 - 9x2 + 27x - 27) - (8x3 + 1) - (x3 + 6x2 + 12x + 8) + (2x - 3)3 + 3.2x.3.(2x - 3) = 0
x3 - 9x2 + 27x - 27 - 8x3 - 1 - x3 - 6x2 - 12x - 8 + (2x)3 - 33 = 0
-15x2 + 15x - 63 = 0
![](https://rs.olm.vn/images/avt/0.png?1311)
2.
A = x2 - 4x + 10 = (x2 - 2.x.2 + 22) + 6 = (x - 2)2 + 6 \(\ge\) 6
( do (x - 2)2 \(\ge\) 0)
Vậy: GTNN của A là 6 (tại x = 2)
B = x2 - x + 1 = (x2 - 2.x.\(\frac{1}{2}\) + \(\frac{1}{4}\)) + \(\frac{3}{4}\) = \(\left(x-\frac{1}{2}\right)^2\) + \(\frac{3}{4}\) \(\ge\) \(\frac{3}{4}\)
Vậy: GTNN của B là \(\frac{3}{4}\) (tại x = \(\frac{1}{2}\) )
C = 2x2 - 8x = 2 (x2 - 4x) = 2(x2 - 2.x.2 + 4) - 8 = 2(x - 2)2 - 8 \(\ge\) -8
Vậy : GTNN của C là -8 (tại x = 2)
Bài 1:
a)
\((x-5)(2x-1)-4x(x+2)=-(x-1)^2-2x(x-3)\)
\(\Leftrightarrow (2x^2-11x+5)-(4x^2+8x)=-(x^2-2x+1)-(2x^2-6x)\)
\(\Leftrightarrow -2x^2-19x+5=-3x^2+8x-1\)
\(\Leftrightarrow x^2-27x+6=0\)
\(\Leftrightarrow (x-\frac{27}{2})^2=\frac{705}{4}\Rightarrow \left[\begin{matrix} x-\frac{27}{2}=\frac{\sqrt{705}}{2}\\ x-\frac{27}{2}=\frac{-\sqrt{705}}{2}\end{matrix}\right.\)
\(\Rightarrow \left[\begin{matrix} x=\frac{27+\sqrt{705}}{2}\\ x=\frac{27-\sqrt{705}}{2}\end{matrix}\right.\)
b)
\((4x-1)-(2x+3)^2-12x(x+3)=1\)
\(\Leftrightarrow 4x-1-(4x^2+12x+9)-(12x^2+36x)=1\)
\(\Leftrightarrow -16x^2-44x-11=0\)
\(\Leftrightarrow 16x^2+44x+11=0\)
\(\Leftrightarrow (4x+\frac{11}{2})^2=\frac{77}{4}\)
\(\Rightarrow \left[\begin{matrix} 4x+\frac{11}{2}=\frac{\sqrt{77}}{2}\\ 4x+\frac{11}{2}=\frac{-\sqrt{77}}{2}\end{matrix}\right.\Rightarrow \left[\begin{matrix} x=\frac{\sqrt{77}-11}{8}\\ x=\frac{-\sqrt{77}-11}{8}\end{matrix}\right.\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 1:
a) \(9\left(4x+3\right)^2=16\left(3x-5\right)^2\)
\(114x^2+216x+81=114x^2-480x+400\)
\(144x^2+216x=144x^2-480x+400-81\)
\(114x^2+216=114x^2-480x+319\)
\(696x=319\)
\(\Rightarrow x=\frac{11}{24}\)
b) \(\left(x^3-x^2\right)^2-4x^2+8x-4=0\)
\(\left(x-1\right)^2\left(x^2+2\right)\left(x+\sqrt{2}\right)\left(x-\sqrt{2}\right)=0\)
\(\Rightarrow x=1\)
c) \(x^5+x^4+x^3+x^2+x+1=0\)
\(\left(x+1\right)\left(x^2+x+1\right)\left(x^2-x+1\right)=0\)
\(\Rightarrow x=-1\)
Bài 2:
a) \(5x^3-7x^2-15x+21=0\)
\(\left(5x-7\right)\left(x+\sqrt{3}\right)\left(x-\sqrt{3}\right)=0\)
\(\Rightarrow x=\frac{7}{5}\)
b) \(\left(x-3\right)^2=4x^2-20x+25\)
\(x^2-6x+9-25=4x^2-20x+25\)
\(x^2-6x+9=4x^2-20x+25-25\)
\(x^2-6x-16=4x^2-20x\)
\(x^2+14x-16=4x^2-4x^2\)
\(-3x^2+14x-16=0\)
\(\Rightarrow\orbr{\begin{cases}x=2\\x=\frac{8}{3}\end{cases}}\)
c) \(\left(x-1\right)^2-5=\left(x+2\right)\left(x-2\right)-x\left(x-1\right)\)
\(x^2-2x=x-4\)
\(x^2-2x=x-4+4\)
\(x^2-2x=x-x\)
\(x^2-3x=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x=3\end{cases}}\)
d) \(\left(2x-3\right)^3-\left(2x+3\right)\left(4x^2-1\right)=-24\)
\(-48x^2+56x-24=-24\)
\(-48x^2+56x=-24+24\)
\(-48x^2+56=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{7}{6}\end{cases}}\)
mình ko chắc
![](https://rs.olm.vn/images/avt/0.png?1311)
không ai trả lời
a,\(2\left(3x-1\right)-5\left(x-3\right)-9\left(2x-4\right)=24\)
\(< =>6x-2-5x+15-18x+36=24\)
\(< =>-29x+49=24< =>29x=25< =>x=\frac{25}{29}\)
b,\(2x^2+4\left(x^2-1\right)=2x\left(3x+1\right)\)
\(< =>2x^2+4x^2-4=6x^2+2x\)
\(< =>2x=-4< =>x=-\frac{4}{2}=-2\)
c, \(2x\left(5-3x\right)+2x\left(3x-5\right)-3\left(x-7\right)=4\)
\(< =>10x-6x^2+6x^2-10x-3x+21=4\)
\(< =>-3x=4-21=-17< =>x=\frac{17}{3}\)
d, \(5x\left(x+1\right)-4x\left(x+2\right)=1-x\)
\(< =>5x^2+5x-4x^2-8x=1-x\)
\(< =>x^2-3x+x-1=0\)
\(< =>x^2-2x-1=0\)
\(< =>\left(x-1\right)^2=2\)
\(< =>\orbr{\begin{cases}x-1=\sqrt{2}\\x-1=-\sqrt{2}\end{cases}}\)
\(< =>\orbr{\begin{cases}x=1+\sqrt{2}\\x=1-\sqrt{2}\end{cases}}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\left(-3x-2\right)^2+\left(3x+5\right)\left(5-3x\right)=-7\)
\(\Leftrightarrow9x^2+12x+4+15x-9x^2+25-15x=-7\)
\(\Leftrightarrow12x+36=0\Leftrightarrow x=-3\)
\(\left(x+2\right)\left(x^2+2x+2\right)-x\left(x-8\right)^2=\left(4x-3\right)\left(4x+3\right)\)
\(\Leftrightarrow x^3+2x^2+2x+2x^2+4x+4-x\left(x^2-16x+64\right)=16x^2-9\)
\(\Leftrightarrow x^3+4x^2+6x+4-x^3+16x^2-64=16x^2-9\)
\(\Leftrightarrow4x^2+6x-51=0\)
\(\cdot\Delta=6^2-4.4.\left(-51\right)=852\)
Vậy pt có 2 nghiệm phân biệt
\(x_1=\frac{-6+\sqrt{852}}{8}\);\(x_2=\frac{-6-\sqrt{852}}{8}\)
Lời giải:
PT $\Leftrightarrow (8x^3-36x^2+54x-27)-(8x^3-2x+12x^2-3)=-24$
$\Leftrightarrow -48x^2+56x-24=-24$
$\Leftrightarrow -48x^2+56x=0$
$\Leftrightarrow 8x(7-6x)=0$
$\Leftrightarrow x=0$ hoặc $7-6x=0$
$\Leftrightarrow x=0$ hoặc $x=\frac{7}{6}$
\(\left(2x-3\right)^3-\left(2x+3\right)\left(4x^2-1\right)=-24\)
\(8x^3-18x^2+27x-27-\left(8x^3-2x+12x^2-3\right)\) =-24
\(8x^3-18x^2+27x-27-8x^3+2x-12x^2-3\) = -24
\(-30x^2+29x-30=-24\)
\(-30x^2+29x=6\)\(x\left(-30x+29\right)=6\)