![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(B=\left(\frac{2x+1}{2x-1}+\frac{4}{1-4x^2}-\frac{2x-1}{2x+1}\right):\frac{x^2+2}{2x+1}\left(x\ne\pm\frac{1}{2}\right)\)
\(\Leftrightarrow B=\left(\frac{2x+1}{2x-1}-\frac{4}{4x^2-1}-\frac{2x-1}{2x+1}\right):\frac{x^2+2}{2x+1}\)
\(\Leftrightarrow B=\left(\frac{\left(2x+1\right)^2}{\left(2x-1\right)\left(2x+1\right)}-\frac{4}{\left(2x-1\right)\left(2x+1\right)}-\frac{\left(2x-1\right)^2}{\left(2x-1\right)\left(2x+1\right)}\right)\cdot\frac{2x+1}{x^2+2}\)
\(\Leftrightarrow B=\frac{\left(2x\right)^2+2\cdot1\cdot2x+1-4-\left[\left(2x\right)^2-2\cdot2x\cdot1+1^2\right]}{\left(2x-1\right)\left(2x+1\right)}\cdot\frac{2x+1}{x^2+2}\)
\(\Leftrightarrow B=\frac{4x^2+4x-3-4x^2+4x-1}{\left(2x-1\right)\left(2x+1\right)}\cdot\frac{2x+1}{x^2+2}\)
\(\Leftrightarrow B=\frac{\left(8x-4\right)\left(2x+1\right)}{\left(2x-1\right)\left(2x+1\right)\left(x^2+2\right)}=\frac{4\left(2x-1\right)\left(2x+1\right)}{\left(2x-1\right)\left(2x+1\right)\left(x^2+2\right)}=\frac{4}{x^2+2}\)
b) \(B=\frac{4}{x^2+2}\left(x\ne\pm\frac{1}{2}\right)\)
Với x=-1 (TMĐK) thay vào B ta có:
\(B=\frac{4}{\left(-1\right)^2+2}=\frac{4}{1+2}=\frac{4}{3}\)
Vậy \(B=\frac{4}{3}\)khi x=-1
![](https://rs.olm.vn/images/avt/0.png?1311)
\(a,\left(x-2\right)^3-x\left(x+1\right)\left(x-1\right)+6x\left(x-3\right)\)
\(=\left(x-2\right)^3-x\left(x^2-1\right)+6x^2-18x\)
\(=x^3-6x^2+12x-8-x^3+x+6x^2-18x\)
\(=-5x\)
Các câu còn lại lm tương tự nhé
![](https://rs.olm.vn/images/avt/0.png?1311)
1. \(\frac{1}{1-x}+\frac{1}{1+x}+\frac{2}{x^2-1}\)
= \(-\frac{x+1}{\left(x-1\right)\left(x+1\right)}+\frac{x-1}{\left(x-1\right)\left(x+1\right)}+\frac{2}{\left(x-1\right)\left(x+1\right)}\)
= \(\frac{-x-1+x-1+2}{\left(x-1\right)\left(x+1\right)}=0\)
c) \(\left(\frac{x^2-16}{x^2+8x+16}+\frac{6}{x+4}\right)\cdot\frac{2x}{x+2}\)
= \(\left(\frac{x^2-16}{\left(x+4\right)^2}+\frac{6\left(x+4\right)}{\left(x+4\right)^2}\right)\cdot\frac{2x}{x+2}\)
= \(\left(\frac{x^2-16+6x+24}{\left(x+4\right)^2}\right)\cdot\frac{2x}{x+2}\)
= \(\frac{x^2+6x+8}{\left(x+4\right)^2}\cdot\frac{2x}{x-2}\)
= \(\frac{x^2+4x+2x+8}{\left(x+4\right)^2}\cdot\frac{2x}{x+2}\)
= \(\frac{\left(x+4\right)\left(x+2\right)}{\left(x+4\right)^2}\cdot\frac{2x}{x+2}=\frac{2x}{x+4}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a)(ab−1)2+(a+b)2
=a2b2−2ab+1+a2+2ab+b2
=a2b2+1+a2+b2=a2(b2+1)+(b2+1) = (a2+1)(b2+1)
c)x3−4x2+12x−27
=x3−27+(−4x2+12x)
=(x−3)(x2+3x+9)−4x(x−3)
=(x−3)(x2+3x+9−4x)
=(x−3)(x2−x+9)
b)x3+2x2+2x+1
=x3+2x2+x+x+1
=x(x2+2x+1)+(x+1)
=x(x+1)2+(x+1)
=(x+1)(x(x+1)+1)
=(x+1)(x2+x+1)
d)x4−2x3+2x−1
=x4−2x3+x2−x2+2x−1
=x2(x2−2x+1)−(x2−2x+1)
=(x2−2x+1)(x2−1)
=(x−1)2(x−1)(x+1)
=(x−1)3(x+1)
e)x4+2x3+2x2+2x+1
=x4+2x3+x2+x2+2x+1
=x2(x2+2x+1)+(x2+2x+1)
=(x2+2x+1)(x2+1)
=(x+1)2(x2+1)
( 2x + 1 )2 - 4( 2x + 1 ) + 4 = 16
<=> ( 2x + 1 - 2 )2 - 16 = 0
<=> ( 2x - 1 )2 - 42 = 0
<=> ( 2x - 1 - 4 )( 2x - 1 + 4 ) = 0
<=> ( 2x - 5 )( 2x + 3 ) = 0
<=> x = 5/2 hoặc x = -3/2