Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2009 - | x - 2009 | = x
TH1: x-2009 \(\ge\) 0=>x\(\ge\)2009
=>2009-(x-2009)=x
=>2009-x+2009=x
=>2x=4018
=>x=2009 (nhận)
TH2: x-2009<0 =>x<2009
=>2009-[-(x-2009)]=x
=>2009+x-2009=x
=>x=x =>0x=0 (luôn đúng với mọi x)
Vậy x\(\le\)2009
Mình không biết trình bày nhưng sau 1 hồi suy luận thì x = 0
2009-|(x-2009)|=x
=> |x-2009|=2009-x
TH1: x-2009 = 2009-x
=> x+x= 2009+2009
=> x=2009
TH2: -x+2009=2009-x
=> -x+x=2009-2009
=> 0=0
vậy x= 2009
2009-|x-2009|=x
=>2009-x=|x-2009|
=>|x-2009|=-(x-2009)
=>x < hoặc = 2009
2009 - | 2009 - x | = x
| x - 2009 | = 2009 - x
x - 2009 = 2009 + x
x + x = 2009 + 2009
x = 2009
\(2009-|x-2009|=x\)
Nếu \(x\ge2009\Rightarrow2009-x+2009=x\)
\(\Rightarrow2.2009-2x\)
\(\Rightarrow x=2009\)
Nếu \(x< 2009\Rightarrow2009-2009+x=x\)
\(\Rightarrow0=0\)
Vậy với \(\forall x< 2009\)thì thỏa mãn
vậy với \(x\le2009\)thì \(2009-|x-2009|=x\)
\(\hept{\begin{cases}\left|x+\frac{1}{2009}\right|\ge0\\....\\\left|x+\frac{2008}{2009}\right|\ge0\end{cases}\Rightarrow\left|x+\frac{1}{2009}\right|+\left|x+\frac{2}{2009}\right|+....\left|x+\frac{2008}{2009}\right|\ge0}\)
\(\Rightarrow2009x\ge0\Rightarrow x\ge0\)
\(\Rightarrow\hept{\begin{cases}\left|x+\frac{1}{2009}\right|=x+\frac{1}{2009}\\....\\\left|x+\frac{2008}{2009}\right|=x+\frac{2008}{2009}\end{cases}\Rightarrow x+\frac{1}{2009}+...+x+\frac{2008}{2009}}=2009x\)
\(2008x+201840=2009x\Rightarrow x=201840\)
p/s: cách làm thì khá ok, nhưng kq không chắc lắm nhé, có gì bn tính lại nha
Boul đẹp trai_tán gái đổ 100% sai 100%
Sao dòng cuối lại tek ? Các phân số ấy cộng vào không thể là 201840
Về hướng làm thì đúng nhưng chỉ đúng đến bước phá trị thôi
Tham khảo cách làm nhưg nhớ đổi đoạn cuối nhé !
Bài làm:
Ta có: \(2009-\left|x-2009\right|=x\)
\(\Leftrightarrow\left|x-2009\right|=2009-x\)
\(\Leftrightarrow\orbr{\begin{cases}x-2009=2009-x\\x-2009=x-2009\end{cases}}\Rightarrow\orbr{\begin{cases}2x=2009.2\\0x=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=2009\\0x=0\end{cases}}\)
Vậy PT thỏa mãn với mọi x
Bài này ta áp dụng kiến thức sau : \(\left|A\right|=\hept{\begin{cases}A\Leftrightarrow A\ge0\\-A\Leftrightarrow A< 0\end{cases}}\).
Ta có : \(2009-\left|x-2009\right|=x\)
\(\Leftrightarrow\left|x-2009\right|=2009-x\)
\(\Leftrightarrow x-2009\le0\)
\(\Leftrightarrow x\le2009\)
Vậy \(x\le2009\)