\(1\frac{1}{2}-x=1\frac{1}{2}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 9 2016

\(1\frac{1}{2}-x=1\frac{1}{2}\)

              \(x=1\frac{1}{2}-1\frac{1}{2}\)

              \(x=0\)

24 tháng 9 2016

\(x=1\frac{1}{2}-1\frac{1}{2}=0\)

6 tháng 4 2017

giai câu a

a)   ta có   (\(\frac{2}{11.13}\)+\(\frac{2}{13.15}\)+.....+\(\frac{2}{19.21}\))*462 - x =19

                (\(\frac{1}{11}\)-\(\frac{1}{13}\)+\(\frac{1}{13}\)-\(\frac{1}{15}\)+....+\(\frac{1}{19}\)-\(\frac{1}{21}\)) * 462 -x=19

                (\(\frac{1}{11}\)-\(\frac{1}{21}\))*462-x=19

6 tháng 4 2017

còn lại ban tu tinh nhu bai tim x

26 tháng 7 2019

Bài 1:  Hơi thắc mắc một chút, ukm tìm x để phân số nguyên à bn:

\(a.\)\(\frac{6+x}{33}\)có giá trị nguyên

\(\Leftrightarrow6+x⋮33\)

\(\Leftrightarrow6+x\in B\left(33\right)=\left\{0;\pm33;\pm66;...\right\}\)

\(\Leftrightarrow x\in\left\{-6;27;-39;60;-72;...\right\}\)

Bài này sao sao ấy, nếu vậy thì sẽ có rất nhiều x thỏa mãn ( vô vàn luôn, ko giới hạn )

\(b.\)\(\frac{12+x}{43-x}\)có giá trị nguyên

\(\Leftrightarrow12+x⋮43-x\)

Ta thấy: \(43-x⋮43-x\forall x\in Z\)

\(\Rightarrow\left(12+x\right)+\left(43-x\right)⋮43-x\forall x\in Z\)

\(\Leftrightarrow12+x+43-x⋮43-x\forall x\in Z\)

\(\Leftrightarrow\left(12+43\right)+\left(x-x\right)⋮43-x\forall x\in Z\)

\(\Leftrightarrow55⋮43-x\forall x\in Z\)

\(\Leftrightarrow43-x\inƯ\left(55\right)=\left\{\pm1;\pm5;\pm11;\pm55\right\}\)

Sau đó bn lập bẳng kết quả và xét là đc nha, mk ko bt lập bảng kết quả trong OLM nên ko giúp bn đc, thứ lỗi nha.

Bài 2:

Câu hỏi của Sarimi chan - Toán lớp 5 - Học toán với OnlineMath

Câu hỏi của Phạm Huyền My - Toán lớp 5 - Học toán với OnlineMath

Vào link này nhé, bài của mk ở đây

Rất vui vì giúp đc bn !!!

28 tháng 8 2017

Ta co  \(\frac{1}{21}+\frac{1}{28}+\frac{1}{36}+....+\frac{2}{x\cdot\left(x+1\right)}\)

\(\Rightarrow\)\(\frac{2}{42}+\frac{2}{56}+\frac{2}{72}+...+\frac{2}{x\cdot\left(x+1\right)}=\frac{2}{9}\)

\(\Rightarrow\)\(2\cdot\left(\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+....+\frac{1}{x\cdot\left(x+1\right)}\right)=\frac{2}{9}\)

\(\Rightarrow\)\(2\cdot\left(\frac{1}{6\cdot7}+\frac{1}{7\cdot8}+\frac{1}{8\cdot9}+...+\frac{1}{x\cdot\left(x+1\right)}\right)=\frac{2}{9}\)

\(\Rightarrow\)\(\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{1}{9}\)

\(\Rightarrow\)\(\frac{1}{6}-\frac{1}{x+1}=\frac{1}{9}\)

\(\Rightarrow\frac{1}{x+1}=\frac{1}{18}\)

\(\Leftrightarrow x+1=18\)

       \(x=17\)

12 tháng 8 2018

1/2`2+1/3`2+1/4`2+...+1/n`2<1

25 tháng 6 2017

Ta có : \(\frac{1}{4}+\frac{1}{3}:\frac{1}{x}=\frac{11}{12}\)

\(\Rightarrow\frac{1}{3}:\frac{1}{x}=\frac{11}{12}-\frac{1}{4}\)

\(\frac{1}{3}:\frac{1}{x}=\frac{2}{3}\)

\(\frac{1}{x}=\frac{1}{3}:\frac{2}{3}\)

\(\frac{1}{x}=\frac{1}{3}\times\frac{3}{2}\)

\(\frac{1}{x}=\frac{1}{2}\)

=> x = 2

25 tháng 6 2017

a) \(\frac{x\div3-16}{2}+21=38\)

\(\frac{x\div3-16}{2}=38+21\)

\(\frac{x\div3-16}{2}=59\)

\(x\div3-16=59.2\)

\(x\div3-16=118\)

\(x\div3=118+16\)

\(x\div3=134\)

\(x=134.3\)

\(x=402\)

b) \(\frac{1}{4}+\frac{1}{3}\div\frac{1}{x}=\frac{11}{12}\)

\(\frac{1}{3}\div\frac{1}{x}=\frac{11}{12}-\frac{1}{4}\)

\(\frac{1}{3}\div\frac{1}{x}=\frac{2}{3}\)

\(\frac{1}{x}=\frac{1}{3}\div\frac{2}{3}\)

\(\frac{1}{x}=\frac{1}{2}\)

Vậy x = ....

12 tháng 7 2017

\(\left(x+\frac{1}{2}\right)+\left(x+\frac{1}{4}\right)+\left(x+\frac{1}{8}\right)+...+\left(x+\frac{1}{512}\right)=1\)

\(9x+\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+...+\frac{1}{512}\right)=1\)

\(9x+\left[\left(1-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{4}\right)+\left(\frac{1}{4}-\frac{1}{8}\right)+....+\left(\frac{1}{256}-\frac{1}{512}\right)\right]=1\)

\(9x+\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{8}+...+\frac{1}{512}\right)=1\)

\(9x+\left(1-\frac{1}{512}\right)=1\)

\(9x+\frac{511}{512}=1\)

\(9x=1-\frac{511}{512}\)

\(9x=\frac{1}{512}\)

\(\Rightarrow x=\frac{1}{512}\div9=\frac{1}{4608}\)