Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(x^2-3x+4\)
\(=x^2-2\cdot x\cdot\frac{3}{2}+\frac{9}{4}+\frac{7}{4}\)
\(=\left(x-\frac{3}{2}\right)^2+\frac{7}{4}>0\forall x\)
b) \(x^2-5x+8\)
\(=x^2-2\cdot x\cdot\frac{5}{2}+\frac{25}{4}+\frac{7}{4}\)
\(=\left(x-\frac{5}{2}\right)^2+\frac{7}{4}>0\forall x\)
c) \(x^2+y^2+2x-4x-4y+5\)
\(=\left(x+y\right)^2-4\left(x+y\right)+4+1\)
\(=\left(x+y-2\right)^2+1>0\forall x\)
I don't now
or no I don't
..................
sorry
a) \(x^4-x^3-7x^2+x+6=0\)
\(\Leftrightarrow\)\(x^4-x^3-7x^2+7x-6x+6=0\)
\(\Leftrightarrow\)\(x^3\left(x-1\right)-7x\left(x-1\right)-6\left(x-1\right)=0\)
\(\Leftrightarrow\)\(\left(x-1\right)\left(x^3-7x-6\right)=0\)
\(\Leftrightarrow\)\(\left(x-3\right)\left(x-1\right)\left(x+1\right)\left(x+2\right)=0\)
đến đây lm tiếp
làm cái này dài lắm nên mk sẽ làm riêng từng bài nha!
\(1,a,\left(2x-3\right)^2-4\left(x+1\right)\left(x-1\right)=4x^2-12x+9-4\left(x^2-1\right)\)
\(=4x^2-12x+9-4x^2+4\)
\(=-12x+13\)
\(b,x\left(x^2-2\right)-\left(x-1\right)\left(x^2+x+1\right)=x^3-2x-\left(x^3-1\right)\)
\(=-2x+1\)
Bài 1 :
a, \(\left(x-3\right)^2-4=0\Leftrightarrow\left(x-3\right)^2=4\Leftrightarrow\left(x-3\right)^2=\left(\pm2\right)^2\)
TH1 : \(x-3=2\Leftrightarrow x=5\)
TH2 : \(x-3=-2\Leftrightarrow x=1\)
b, \(x^2-2x=24\Leftrightarrow x^2-2x-24=0\)
\(\Leftrightarrow\left(x-6\right)\left(x+4\right)=0\)
TH1 : \(x-6=0\Leftrightarrow x=6\)
TH2 : \(x+4=0\Leftrightarrow x=-4\)
c, \(\left(2x-1\right)^2+\left(x+3\right)^2-5\left(x+2\right)\left(x-2\right)=0\)
\(\Leftrightarrow4x^2-4x+1+x^2+6x+9-5\left(x^2-4\right)=0\)
\(\Leftrightarrow2x+30=0\Leftrightarrow x=-15\)
d, tương tự
\(x.\left(x^3y-x\right)-x^2.\left(x^2y-2\right)=4\)
\(\Rightarrow x^4y-x^2-x^4y+x^2.2=4\)
\(\Rightarrow\left(x^4y-x^4y\right)-x^2+x^2.2=4\)
\(\Rightarrow0-x^2+x^2.2=4\)
\(\Rightarrow-x^2+x^2.2=4\)
\(\Rightarrow x^2.\left(-1+2\right)=4\)
\(\Rightarrow x^2=4\)
\(\Rightarrow x=\pm2\)
Mà đề ra: \(x>0\)
Vậy \(x=2\)
\(x.\left(x^3y-x\right)-x^2.\left(x^2y-2\right)=4\)
\(\rightarrow x^4t-x^2-x^4y+2x^2=4\)
\(\rightarrow x^2=4\)
\(\rightarrow\orbr{\begin{cases}x=2\\x=-2\end{cases}}\)
Mà \(x>0\)
\(\rightarrow x=2\)