K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 7 2017

Ta có: \(\frac{x}{y+z+t}=\frac{y}{z+t+x}=\frac{z}{x+t+y}=\frac{t}{x+y+z}\)

Thêm 1 vào mỗi phân số ta được:

\(\frac{x}{y+z+t}+1=\frac{y}{z+t+x}+1=\frac{z}{x+t+y}+1=\frac{t}{x+y+z}+1\)

\(\Rightarrow\frac{x+y+z+t}{y+z+t}=\frac{x+y+z+t}{z+t+x}=\frac{x+y+z+t}{x+t+y}=\frac{x+y+z+t}{x+y+z}\)

- Nếu x + y + z + t \(\ne\) 0 thì x = y = z = t

\(\Rightarrow P=\frac{x+y}{z+t}+\frac{y+z}{t+x}+\frac{z+t}{x+y}+\frac{t+x}{y+z}=\frac{x+x}{x+x}+\frac{x+x}{x+x}+\frac{x+x}{x+x}+\frac{x+x}{x+x}=1+1+1+1=4\)

- Nếu x + y + z + t = 0 thì x + y = -(z + t)

                                         y + z = -(t + x)

                                         z + t = -(x + y)

                                         t + x = -(y + z)

\(\Rightarrow P=\frac{x+y}{z+t}+\frac{y+z}{t+x}+\frac{z+t}{x+y}+\frac{t+x}{y+z}=\frac{-\left(z+t\right)}{z+t}+\frac{-\left(t+x\right)}{t+x}+\frac{-\left(x+y\right)}{x+y}+\frac{-\left(y+z\right)}{y+z}=\left(-1\right)+\left(-1\right)+\left(-1\right)+\left(-1\right)=-4\)

10 tháng 3 2019

Tham khảo lời giải tải đây nha : http://123link.vip/TJMUnni

31 tháng 7 2016

Phải là x + y - 3 thì mk mới làm đượcokleuleu

31 tháng 7 2016

đề bài đúng đấy

31 tháng 7 2016

Hình như đề đúng phải là: \(\frac{x+z+2}{y}=\frac{y+z+1}{x}=\frac{x+y-3}{z}=\frac{1}{x+y+z}\)bạn xem lại nhé :)))

Theo tính chất dãy tỉ số bằng nhau ta có:

\(\frac{x+z+2}{y}=\frac{y+z+1}{x}=\frac{x+y-3}{z}=\frac{\left(x+z+2\right)+\left(y+z+1\right)+\left(x+y-3\right)}{x+y+z}\)

\(=\frac{2\left(x+y+z\right)}{x+y+z}=2\)(do \(x+y+z\ne0\)).

Do đó \(\frac{1}{x+y+z}=2\)\(\Rightarrow\)\(x+y+z=0,5\)

Thay kết quả này vào đề bài ta được:

\(\frac{0,5-y+2}{y}=\frac{0,5-x+1}{x}=\frac{0,5-z-3}{z}=2\)

\(\Leftrightarrow\)\(\frac{2,5-y}{y}=\frac{1,5-x}{x}=\frac{-2,5-z}{z}=2\)\(\Leftrightarrow\)\(\frac{2,5}{y}=\frac{1,5}{x}=\frac{-2,5}{z}=3\)

Dễ dàng tính được \(y=\frac{5}{6},\)\(x=\frac{1}{2},\)\(z=\frac{-5}{6}\)

31 tháng 7 2016

Đề lạ lạ cái chỗ \(\frac{x+y+3}{z}\)ấy. Bạn xem lại xem.

22 tháng 7 2019

a) Ta có: \(\frac{x}{5}=\frac{y}{6}\) =>  \(\frac{x}{20}=\frac{y}{24}\) 

        \(\frac{y}{8}=\frac{z}{11}\) => \(\frac{y}{24}=\frac{z}{33}\)

=> \(\frac{x}{20}=\frac{y}{24}=\frac{z}{33}\)
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

     \(\frac{x}{20}=\frac{y}{24}=\frac{z}{33}=\frac{x+y-z}{20+24-33}=\frac{44}{11}=4\)

=> \(\hept{\begin{cases}\frac{x}{20}=4\\\frac{y}{24}=4\\\frac{z}{33}=4\end{cases}}\) =>  \(\hept{\begin{cases}x=4.20=80\\y=4.24=96\\z=4.33=132\end{cases}}\)

Vậy ...

b) Ta có: 3x = 8y => x/8 = y/3 => x/8 = 2y/6

Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

         \(\frac{x}{8}=\frac{2y}{6}=\frac{x-2y}{8-6}=\frac{4}{2}=2\)

=> \(\hept{\begin{cases}\frac{x}{8}=2\\\frac{y}{3}=2\end{cases}}\) => \(\hept{\begin{cases}x=2.8=16\\y=2.3=6\end{cases}}\)

Vậy ...

22 tháng 7 2019

Ta có : \(\hept{\begin{cases}\frac{x}{5}=\frac{y}{6}=>\frac{x}{20}=\frac{y}{24}\\\frac{y}{8}=\frac{z}{11}=>\frac{y}{24}=\frac{z}{33}\end{cases}=>\frac{x}{20}=\frac{y}{24}=\frac{z}{33}}\)

Đến đây áp dụng tính chất dãy tỉ số bằng nhau là ra . Mình chỉ hướng làm thôi chứ ko giải hết đâu nha . Đến đây tự giải ra nha .

b)Ta có : \(3x=8y=>\frac{x}{8}=\frac{y}{3}=\frac{2y}{6}\)

Áp dụng tính chất dãy tỉ số bằng nhau tự làm tiếp nha 

Hok tốt