Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: 3/5 . x = 2/3 . y
<=> 3x /5 = 2y /3
=> 3x /5 . 6 = 2y /3 . 6
<=>x/10 = y/9
<=>x2/102 = y2/92
<=>x2/100 = y2/81
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
x2/100 = y2/81 = x2 - y2/100 - 81 = 38/19 = 2
Suy ra: x2/100 = 2 =>x2 = 50 (loại)
Vậy x thuộc rỗng.
\(\frac{3}{5}x=\frac{2}{3}y\)suy ra : \(\frac{3x}{5.6}=\frac{2y}{3.6}\)hay \(\frac{x}{10}=\frac{y}{9}=k\)
Do đó : x = 10k ; y = 9k
Ta có : x2 - y2 = ( 10k )2 - ( 9k )2 = 19k2 = 38 ; k2 = 2 ; k = 2 hoặc k = -2
Suy ra : x = \(\mp10\sqrt{2}\); y = \(\mp9\sqrt{2}\)
Ta có:
\(\frac{3}{5}x=\frac{2}{3}y\)
=> \(x=\frac{2}{3}:\frac{3}{5}y\)
=> \(x=\frac{2}{3}.\frac{5}{3}y\)
=> \(x=\frac{10}{9}y=\frac{y}{\frac{9}{10}}\)
=> \(x^2=\frac{y^2}{\frac{81}{100}}\)
Áp dụng tính chất của dãy tỉ số = nhau ta có:
\(x^2=\frac{y^2}{\frac{81}{100}}=\frac{x^2-y^2}{1-\frac{81}{100}}=\frac{38}{\frac{19}{100}}=38.\frac{100}{19}=200\)
=> \(\begin{cases}x^2=200\\y^2=200.\frac{81}{100}=162\end{cases}\)
Đến đây dễ r`
a) \(\frac{2}{x-3}=\frac{5}{4}\)(ĐKXĐ : x khác 3)
=> \(2\cdot4=5\left(x-3\right)\)
=> \(8=5x-15\)
=> \(5x-15=8\)
=> \(5x=23\)=> x = 23/5 (tm)
b) \(\frac{x+1}{5}=\frac{4x-2}{3}\)
=> 3(x + 1) = 5(4x - 2)
=> 3x + 3 = 20x - 10
=> 3x + 3 - 20x + 10 = 0
=> 3x - 20x + 3 + 10 = 0
=> 3x - 20x = -13
=> -17x = -13
=> x = 13/17(tm)
2. a) Nếu đề như thế này : \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\) và x - 2y + 2z = 10
=> \(\frac{x}{2}=\frac{2y}{6}=\frac{2z}{10}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{2}=\frac{2y}{6}=\frac{2z}{10}=\frac{x-2y+2z}{2-6+10}=\frac{10}{6}=\frac{5}{3}\)
=> x = 5/3.2 = 10/3 , y = 5/3.3 = 5, z = 5/3.5 = 25/3 ( nên sửa lại đề bài này nhá)
b) Bạn tự làm
c) \(\frac{x}{y}=\frac{3}{5}\)=> \(\frac{x}{3}=\frac{y}{5}\)=> \(\frac{2x}{6}=\frac{3y}{15}\)
Áp dụng t/c dãy tỉ số bằng nhau ta có :
\(\frac{2x}{6}=\frac{3y}{15}=\frac{2x-3y}{6-15}=\frac{12}{-11}=-\frac{12}{11}\)
=> \(x=-\frac{12}{11}\cdot3=-\frac{36}{11},y=-\frac{12}{11}\cdot5=-\frac{60}{11}\)
d) Đặt x/3 = y/4 = k
=> x = 3k, y = 4k
Theo đề bài ta có => xy = 3k.4k = 12k2
=> 48 = 12k2
=> k2 = 48 : 12 = 4
=> k = 2 hoặc k = -2
Với k = 2 thì x = 3.2 = 6 , y = 4.2 = 8
Với k = -2 thì x = 3(-2) = -6 , y = 4(-2) = -8
Bài 1.
a) \(\frac{2}{x-3}=\frac{5}{4}\)( ĐK : x khác 3 )
<=> 2.4 = ( x - 3 ).5
<=> 8 = 5x - 15
<=> 8 + 15 = 5x
<=> 23 = 5x
<=> 23/5 = x ( tmđk )
b) \(\frac{x+1}{5}=\frac{4x-2}{3}\)
<=> ( x + 1 ).3 = 5( 4x - 2 )
<=> 3x + 3 = 20x - 10
<=> 3x - 20x = -10 - 3
<=> -17x = -13
<=> x = 13/17
Bài 2.
a) \(\hept{\begin{cases}\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\\x-2y+2z=10\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{x}{2}=\frac{2y}{6}=\frac{2z}{10}\\x-2y+2z=10\end{cases}}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{2}=\frac{2y}{6}=\frac{2z}{10}=\frac{x-2y+2z}{2-6+10}=\frac{10}{6}=\frac{5}{3}\)
\(\Rightarrow\hept{\begin{cases}x=\frac{5}{3}\cdot2=\frac{10}{3}\\y=\frac{5}{3}\cdot3=5\\z=\frac{5}{3}\cdot5=\frac{25}{3}\end{cases}}\)
b) \(\hept{\begin{cases}\frac{x}{2}=\frac{y}{5}\\\frac{z}{4}=\frac{y}{6}\\x-y+z=20\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{x}{2}\times\frac{1}{6}=\frac{y}{5}\times\frac{1}{6}\\\frac{z}{4}\times\frac{1}{5}=\frac{y}{6}\times\frac{1}{5}\\x-y+z=20\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{x}{12}=\frac{y}{30}\\\frac{z}{20}=\frac{y}{30}\\x-y+z=20\end{cases}}\Rightarrow\hept{\begin{cases}\frac{x}{12}=\frac{y}{30}=\frac{z}{20}\\x-y+z=20\end{cases}}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{12}=\frac{y}{30}=\frac{z}{20}=\frac{x-y+z}{12-30+20}=\frac{20}{2}=10\)
\(\Rightarrow\hept{\begin{cases}x=10\cdot12=120\\y=10\cdot30=300\\z=10\cdot20=200\end{cases}}\)
c) \(\hept{\begin{cases}\frac{x}{y}=\frac{3}{5}\\2x-3y=12\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{x}{3}=\frac{y}{5}\\2x-3y=12\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{2x}{6}=\frac{3y}{15}\\2x-3y=12\end{cases}}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{2x}{6}=\frac{3y}{15}=\frac{2x-3y}{6-15}=\frac{12}{-9}=-\frac{4}{3}\)
\(\Rightarrow\hept{\begin{cases}x=-\frac{4}{3}\cdot3=-4\\y=-\frac{4}{3}\cdot5=-\frac{20}{3}\end{cases}}\)
d) Đặt \(\frac{x}{3}=\frac{y}{4}=k\Rightarrow\hept{\begin{cases}x=3k\\y=4k\end{cases}}\)
xy = 48
<=> 3k.4k= 48
<=> 12k2 = 48
<=> k2 = 4
<=> k = ±2
+) Với k = 2 => \(\hept{\begin{cases}x=3\cdot2=6\\y=4\cdot2=8\end{cases}}\)
+) Với k = -2 => \(\hept{\begin{cases}x=3\cdot\left(-2\right)=-6\\y=4\cdot\left(-2\right)=-8\end{cases}}\)