Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tớ làm lần lượt nhé.
Ta có:\(\frac{3}{x-1}=\frac{4}{y-2}=\frac{5}{z-3}\)
\(\Rightarrow\frac{x-1}{3}=\frac{y-2}{4}=\frac{z-3}{5}\)
Áp dụng tính chất dãy tỉ số bằng nhau,ta được:
\(\frac{x-1}{3}=\frac{y-2}{4}=\frac{z-3}{5}=\frac{\left(x-1\right)+\left(y-2\right)+\left(z-3\right)}{3+4+5}=\frac{\left(x+y+z\right)-\left(1+2+3\right)}{12}=\frac{18-6}{12}=1\)
\(\Rightarrow\frac{x-1}{3}=1\Rightarrow x=4\)
\(\frac{y-2}{4}=1\Rightarrow y=6\)
\(\frac{z-3}{5}=1\Rightarrow z=3\)
\(\frac{x-y}{2}=\frac{x+y}{12}=\frac{xy}{200}=\frac{x-y+x+y}{2+12}=\frac{2x}{14}=\frac{x}{7}=k\)
\(\Rightarrow x=7k\left(1\right);x+y=12k\left(2\right);xy=200k\left(3\right)\)
Từ \(\left(1\right);\left(2\right)\Rightarrow y=12k-7k=5k\)
\(\Rightarrow xy=5k\cdot7k=35k^2\left(4\right)\)
Từ \(\left(3\right);\left(4\right)\Rightarrow200k=35k^2\Leftrightarrow200=35k\Leftrightarrow k=\frac{200}{35}\)
\(\Rightarrow x=7\cdot\frac{200}{35}=40\)
\(y=5\cdot\frac{200}{35}=\frac{1000}{35}\)
P/S:số khá xấu.sợ sai.nhưng cách làm là như vậy.
Ta có:
a) \(\frac{x}{4}=\frac{y}{3}=\frac{z}{5}\) và \(x+y+z=552\)
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\frac{x}{4}=\frac{y}{3}=\frac{z}{5}=\frac{x+y+z}{4+3+5}=\frac{552}{12}=46\)
\(\hept{\begin{cases}\frac{x}{4}=46\Rightarrow x=46.4=184\\\frac{y}{3}=46\Rightarrow y=46.3=138\\\frac{z}{5}=46\Rightarrow z=46.5=230\end{cases}}\)
Vậy ..........................................
b)
Ta có:
\(3x=4y=6z\Leftrightarrow\frac{x}{\frac{1}{3}}=\frac{y}{\frac{1}{4}}=\frac{z}{\frac{1}{6}}\) và \(x+y+z=315\)
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\frac{x}{\frac{1}{3}}=\frac{y}{\frac{1}{4}}=\frac{z}{\frac{1}{6}}=\frac{x+y+z}{\frac{1}{3}+\frac{1}{4}+\frac{1}{6}}=\frac{315}{\frac{3}{4}}=420\)
\(\hept{\begin{cases}\frac{x}{\frac{1}{3}}=420\Rightarrow x=\frac{1}{3}.420=140\\\frac{y}{\frac{1}{4}}=420\Rightarrow y=\frac{1}{4}.420=105\\\frac{z}{\frac{1}{6}}=420\Rightarrow z=\frac{1}{6}.420=70\end{cases}}\)
Vậy ......................................
Bạn tham khảo tại đây:
Câu hỏi của Hacker Chuyên Nghiệp - Toán lớp 7 - Học toán với OnlineMath
Đặt \(\frac{x-1}{2}=\frac{y+3}{4}=\frac{z-5}{6}=k\)
=> x = 2k + 1
y = 4k - 3
z = 6k + 5
Thay vào biểu thức 5z - 3x - 4y = 50 , ta có :
5z - 3x - 4y = 50
=> 5.(6k + 5) - 3.(2k + 1) - 4.(4k - 3) = 50
=> 30k + 25 - (6k + 3) - (16k - 12) = 50
=> 30k + 25 - 6k - 3 - 16k + 12 = 50
=> (30k - 6k - 16k) + (25 - 3 + 12) = 50
=> 8k + 34 = 50
=> 8k = 16
=> k = 2
=> \(\hept{\begin{cases}x=2k+1=2.2+1=5\\y=4k+3=4.2+3=11\\z=6k+5=6.2+5=17\end{cases}}\)
b)
Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=k\)
=> x = 2k
y = 3k
z = 4k
Thay vào biểu thức M , ta có :
\(M=\frac{y+z-x}{x-y+z}=\frac{3k+4k-2k}{2k-3k+4k}=\frac{5k}{3k}=\frac{5}{3}\)
ĐKXĐ: \(z\ne0\)
Ta có: \(3x=4y=6z\)
\(\Leftrightarrow\frac{x}{\frac{1}{3}}=\frac{y}{\frac{1}{4}}=\frac{z}{\frac{1}{6}}\)
Đặt \(\frac{x}{\frac{1}{3}}=\frac{y}{\frac{1}{4}}=\frac{z}{\frac{1}{6}}=k\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{k}{3}\\y=\frac{k}{4}\\z=\frac{k}{6}\end{matrix}\right.\)
Ta có: \(\frac{xy}{z}=-18\)
\(\Leftrightarrow xy=-18z\)
\(\Leftrightarrow\frac{k}{3}\cdot\frac{k}{4}=-18\cdot\frac{k}{6}\)
\(\Leftrightarrow\frac{k^2}{12}=\frac{-18k}{6}\)
\(\Leftrightarrow\frac{k^2}{12}=-3k\)
\(\Leftrightarrow k^2=-3k\cdot12=-36k\)
\(\Leftrightarrow k^2+36k=0\)
\(\Leftrightarrow k\left(k+36\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}k=0\\k+36=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}k=0\\k=-36\end{matrix}\right.\)
Trường hợp 1: k=0
\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{k}{3}=\frac{0}{3}=0\\y=\frac{k}{4}=\frac{0}{4}=0\\z=\frac{k}{6}=\frac{0}{6}=0\left(loại\right)\end{matrix}\right.\)
Trường hợp 2: k=-36
\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{k}{3}=\frac{-36}{3}=-12\\y=\frac{k}{4}=\frac{-36}{4}=-9\\z=\frac{k}{6}=\frac{-36}{6}=-6\left(nhận\right)\end{matrix}\right.\)
Vậy: (x,y,z)=(-12;-9;-6)