K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 4 2018

Với \(a>0\) thì \(\left|a\right|+a=a+a=2a⋮2\)

Với \(a=0\) thì \(\left|a\right|+a=0+0=0⋮2\)

Với \(a< 0\) thì \(\left|a\right|+a=-a+a=0⋮2\)

Vậy với mọi a thì \(\left|a\right|+a⋮2\)

Ta có :\(\left|y-x\right|+\left|z-y\right|+\left|x-z\right|=2017^x+2018^x\)

\(\Rightarrow\left|y-z\right|+y-z+\left|z-y\right|+z-y+\left|x-z\right|+x-z=2017^x+2018^x\)

Vế trái chia hết cho 2 mà vế phải \(2018^x+2017^x\) không chia hết cho 2(vô lí)

Vậy không có x,y,z thỏa mãn

29 tháng 10 2019

A = | x - 2015 | +| x - 2016 | 

A = | x - 2015 | + | 2016 - x | 

A = | x - 2015 | + | 2016 - x | \(\ge\)| x - 2015 + 2016 - x |

A = | x - 2015 | + | 2016 - x | \(\ge\)1

Dấu = xảy ra\(\Leftrightarrow\)x - 2015 = 0 ; 2016 - x = 0

                       \(\Rightarrow\)x = 2015 hoặc x = 2016

Min A = 1 \(\Leftrightarrow\)x = 2015 hoặc x = 2016

29 tháng 10 2019

Bạn làm đc câu b ko

26 tháng 12 2018

chúc thi tốt

26 tháng 12 2018

Cảm mơn

11 tháng 10 2016

 Câu trả lời hay nhất:  từ giả thiết thứ nhất dặt x= 3t , y =5t , z = -2t 
thay vào giả thiết thứ 2 ta có 15t - 5t - 6t = 124 <=> t =31 
nên x= 93 , y= 155 , z= -62

thân mên

long

 đặng hoàng long

24 tháng 8 2017

 ta có: a+b+c=1 

<=>(a+b+c)^2=1 

<=>ab+bc+ca=0 (1) 

mặt khác: áp dụng tính chất dãy tỉ số bằng nhau ta có: 

x/a=y/b=z/c=(x+y+z)/(a+b+c)=x+y+z 

<=> x=a(x+y+z) ; y=b(x+y+z) ; z=c(x+y+z) 

=>xy+yz+zx=ab(x+y+z)^2+bc(x+y+z)^2+ca(x... 

<=>xy+yz+zx=(ab+bc+ca)(x+y+z)^2 (2) 

từ (1) và (2) ta có đpcm 

1 tháng 2 2018

 \(\left|y-z\right|< 1\)

mà   \(\left|y-z\right|\ge0\)

\(\Rightarrow\)\(\left|y-z\right|=0\)

\(\Leftrightarrow\)\(y-z=0\)

\(\Leftrightarrow\)\(y=z\)

Ta có:   \(\left|x-z\right|< 2017\)  

   \(\Leftrightarrow\)\(\left|x-y\right|< 2017\)(thay  \(z=y\))

   \(\Leftrightarrow\)\(\left|x-y\right|< 2017< 2018\)

   \(\Leftrightarrow\)\(\left|x-y\right|< 2018\)(đpcm)

1 tháng 2 2018

Cảm ơn bạn. Bạn giỏi và tốt quá.May có bạn, ko mình cứ nghĩ cả ngày hôm nay cứ như thằng điên ý. Cái cảm giác mà ko giải đc bài toán nó khó chụi lắm.

18 tháng 8 2017

\(2x=3y\Rightarrow\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{x}{21}=\frac{y}{14}\left(1\right)\)

\(5y=7z\Rightarrow\frac{y}{7}=\frac{z}{5}\Rightarrow\frac{y}{14}=\frac{z}{10}\left(2\right)\)

Từ (1) và (2) \(\Rightarrow\frac{x}{21}=\frac{y}{14}=\frac{z}{10}\Rightarrow\frac{3x}{63}=\frac{7y}{98}=\frac{5z}{50}\)

Áp dụng tính chất dãy tỉ số bằng nhau:

\(\frac{3x}{63}=\frac{7y}{98}=\frac{5z}{50}=\frac{3x-7y+5z}{63-98+50}=\frac{-30}{15}=-2\)

\(\Rightarrow\hept{\begin{cases}3x=\left(-2\right).63=-126\Rightarrow x=-\frac{126}{3}=-42\\7y=\left(-2\right).98=-196\Rightarrow y=-\frac{196}{7}=-28\\5z=\left(-2\right).50=-100\Rightarrow z=-\frac{100}{5}=-20\end{cases}}\)

Vậy \(x=-42;y=-28;z=-20\).

18 tháng 8 2017

Ta có : 

2x=3y\(\Rightarrow\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{x}{21}=\frac{y}{14};\)\(5y=7z\Rightarrow\frac{y}{7}=\frac{z}{5}\Rightarrow\frac{y}{14}=\frac{z}{10}\)\(\Rightarrow\frac{x}{21}=\frac{y}{14}=\frac{z}{10}\)\(\frac{3x}{63}=\frac{7y}{98}=\frac{5z}{50}\)

Theo tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{3x}{63}=\frac{7y}{98}=\frac{5z}{50}=\)\(\frac{3x-7y+5z}{63-98+50}\)\(=\frac{-30}{15}=-2\)

\(\frac{x}{21}=-2\Rightarrow x=-42\)

\(\frac{y}{14}=-2\Rightarrow y=-28\)

\(\frac{z}{10}=-2\Rightarrow z=-20\)

Vậy x;y;z lần lượt là -42;-28;-20