Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ \(\frac{x}{2}=\frac{y}{4}\)
\(\Rightarrow\frac{x^2}{4}=\frac{y^2}{16}=\frac{x^2+y^2}{20}=\frac{2000}{20}=100\)
\(\Rightarrow\orbr{\begin{cases}x=-20\\x=20\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}y=-40\\y=40\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}z=-50\\z=50\end{cases}}\)
b/ \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=\frac{2y-4}{6}=\frac{3z-9}{12}=\frac{x-2y+3z-1+4-9}{2-6+12}=1\)
\(\Rightarrow\hept{\begin{cases}x=3\\y=5\\z=7\end{cases}}\)
6) Ta có
\(A=\frac{x^3}{y+2z}+\frac{y^3}{z+2x}+\frac{z^3}{x+2y}\)
\(=\frac{x^4}{xy+2xz}+\frac{y^4}{yz+2xy}+\frac{z^4}{zx+2yz}\)
\(\ge\frac{\left(x^2+y^2+z^2\right)^2}{xy+2xz+yz+2xy+zx+2yz}\)
\(\Leftrightarrow A\ge\frac{1}{3\left(xy+yz+zx\right)}\ge\frac{1}{3\left(x^2+y^2+z^2\right)}=\frac{1}{3}\)
a) Áp dụng bài toán sau : a + b + c = 0 \(\Rightarrow\)a3 + b3 + c3 = 3abc
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)\(\Rightarrow\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}=3.\frac{1}{x}.\frac{1}{y}.\frac{1}{z}\)
Ta có : \(A=\frac{yz}{x^2}+\frac{xz}{y^2}+\frac{xy}{z^2}=\frac{xyz}{x^3}+\frac{xyz}{y^3}+\frac{xyz}{z^3}\)
\(A=xyz.\left(\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}\right)=xyz.3.\frac{1}{xyz}=3\)
b) x2 + y2 + z2 - xy - 3y - 2z + 4 = 0
4x2 + 4y2 + 4z2 - 4xy - 12y - 8z + 16 = 0
( 4x2 - 4xy + y2 ) + ( 3y2 - 12y + 12 ) + ( 4z2 - 8z + 4 ) = 0
( 2x - y )2 + 3 ( y - 2 )2 + 4 ( z - 1 )2 = 0
Ta có : ( 2x - y )2 \(\ge\)0 ; 3 ( y - 2 )2 \(\ge\)0 ; 4 ( z - 1 )2 \(\ge\)0
Mà ( 2x - y )2 + 3 ( y - 2 )2 + 4 ( z - 1 )2 = 0
\(\Rightarrow\)\(\hept{\begin{cases}2x-y=0\\y-2=0\\z-1=0\end{cases}\Rightarrow\hept{\begin{cases}x=1\\y=2\\z=1\end{cases}}}\)
Vậy ....
Nhanh vậy ta:
chơi khác kiểu không trùng ai hết.
câu 1
\(P=\frac{1}{x^2}+\frac{1}{y^2}=\frac{y^2+x^2}{\left(xy\right)^2}=\frac{20}{\left(xy\right)^2}\)(1)
Ta lại có:
\(\left(x-y\right)^2\ge0\Rightarrow x^2+y^2\ge2xy\Rightarrow xy\le\frac{20}{2}=10\)(2) Đẳng thức khi x=y
Từ (1) và (2) \(\Rightarrow P_{min}=\frac{20}{100}=\frac{1}{5}\) Khi x=y=\(\sqrt{10}\)
câu 2: Không cần đk (x+y+z)=1
\(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}=1\) (1) =>Dk \(\hept{\begin{cases}x+z\ne0\\y+z\ne0\\x+y\ne0\end{cases}\Rightarrow\left(x+y+z\right)\ne0}\)
Nhân hai vế (1) với (x+y+z khác 0)
\(\Leftrightarrow\left(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}\right)\left(x+y+z\right)=1.\left(x+y+z\right)\)
\(\Leftrightarrow\left(\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\right)+\left(x+y+z\right)=\left(x+y+z\right)\)
\(\Rightarrow\left(\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\right)=0\)
Câu 1:
Áp dụng BĐT \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\) ta có:
\(P=\frac{1}{x^2}+\frac{1}{y^2}\ge\frac{4}{x^2+y^2}=\frac{4}{20}=\frac{1}{5}\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}x,y>0\\x^2+y^2=20\\x=y\end{cases}}\Rightarrow x=y=\sqrt{10}\)
Vậy MinP=\(\frac{1}{5}\Leftrightarrow x=y=\sqrt{10}\)
Câu 2:
Từ \(x+y+z=1\Rightarrow\hept{\begin{cases}x=1-\left(y+z\right)\\y=1-\left(x+z\right)\\z=1-\left(x+y\right)\end{cases}}\).Thay vào ta có
\(\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}=\frac{x\left[1-\left(y+z\right)\right]}{y+z}+\frac{y\left[1-\left(x+z\right)\right]}{x+z}+\frac{z\left[1-\left(x+y\right)\right]}{x+y}\)
\(=\frac{x-x\left(y+z\right)}{y+z}+\frac{y-y\left(x+z\right)}{x+z}+\frac{z-z\left(x+y\right)}{x+y}\)
\(=\frac{x}{y+z}-\frac{x\left(y+z\right)}{y+z}+\frac{y}{x+z}-\frac{y\left(x+z\right)}{x+z}+\frac{z}{x+y}-\frac{z\left(x+y\right)}{x+y}\)
\(=\frac{x}{y+z}-x+\frac{y}{x+z}-y+\frac{z}{x+y}-z\)
\(=\left(\frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y}\right)-\left(x+y+z\right)=1-1=0\)
a)theo C-S: \(\left(1+1\right)\left(x^2+y^2\right)\ge\left(x+y\right)^2\)
\(\Rightarrow2\left(x^2+y^2\right)\ge\left(x+y\right)^2\)
Khi \(x=y\)
b)theo C-S: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{\left(1+1+1\right)^2}{x+y+z}=\frac{9}{x+y+z}\)
khi x=y=z
c)theo C-S: \(\left(a^2+b^2\right)\left(x^2+y^2\right)\ge\left(ax+by\right)^2\)
khi \(\frac{a}{x}=\frac{b}{y}\)