\(\frac{x-2}{x+3}\)=\(\frac{x-3}{x+1}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 10 2019

mk sửa lại đề bài c)\(\frac{x}{3}\)=\(\frac{y}{4}\)và xy = 48

26 tháng 10 2019

a) Ta có \(\frac{x-2}{x+3}=\frac{x-3}{x+1}\)

\(\Rightarrow\left(x-2\right)\left(x+1\right)=\left(x-3\right)\left(x+3\right)\)

\(\Rightarrow x^2+x-2x-2=x^2-3^2\)

\(\Rightarrow x^2-x-2=x^2-3^2\)

\(\Rightarrow-x=2-3^2\)

\(\Rightarrow-x=-7\)

\(\Rightarrow x=7\)

b) Từ 5x = 8y = 20z 

=> \(\hept{\begin{cases}5x=8y\\8y=20z\end{cases}\Rightarrow\hept{\begin{cases}\frac{x}{8}=\frac{y}{5}\\\frac{y}{20}=\frac{z}{8}\end{cases}\Rightarrow}\hept{\begin{cases}\frac{x}{32}=\frac{y}{20}\\\frac{y}{20}=\frac{z}{8}\end{cases}\Rightarrow}\frac{x}{32}=\frac{y}{20}=\frac{z}{8}}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có : 

\(\frac{x}{32}=\frac{y}{20}=\frac{z}{8}=\frac{x-y-z}{32-20-8}=\frac{3}{4}\)

\(\Rightarrow x=\frac{32.3}{4}=24;\)

\(y=\frac{20.3}{4}=15;\)

\(z=\frac{8.3}{4}=6\)

Vậy x = 24 ; y = 15 ; z = 6

c) Đặt \(\frac{x}{3}=\frac{y}{4}=k\)

\(\Rightarrow x=3k;y=4k\)

Khi đó xy = 48

<=> 3k.4k = 48

=> 12.k2 = 48

=> k2 = 4

=> k2 = 22

=> \(k=\pm2\)

Nếu k = - 2

=> \(\hept{\begin{cases}x=-6\\y=-8\end{cases}}\)

Nếu k = 2

=> \(\hept{\begin{cases}x=6\\y=8\end{cases}}\)

Vậy các cặp số (x ; y) thỏa mãn là (- 6 ; - 8) ; (6 ; 8)

mk cung hoc lop 7 nhung cai bai do ma ko lam dc thi chet di

6 tháng 8 2016

a) Aps dụng tính chất các dãy tỉ số bằng nhau, ta có:

x/4  =y/3 = z/9 = 3y/9 = 4z/36 = (x-3y+4z)/(4-9+36)= 62/31 = 2

=> x=2.4=8

     y=2.3=6

     z=2.9=18

6 tháng 8 2016

a) \(\frac{x}{4}=\frac{y}{3}=\frac{z}{9}\)

ADTCCDTSBN, ta có: 

\(\frac{x}{4}=\frac{y}{3}=\frac{z}{9}=\frac{x-3y+4z}{4-9+36}=\frac{62}{31}=2\)

\(\Rightarrow x=2.4=8\)

\(y=2.3=6\)

\(z=2.9=18\)

b) Đề có nhầm lẫn j k nhỉ =.=

c) \(5x=8y=20z\Leftrightarrow\frac{x}{\frac{1}{5}}=\frac{y}{\frac{1}{8}}=\frac{z}{\frac{1}{20}}\)

ADTCCDTSBN, ta có:

\(\frac{x}{\frac{1}{5}}=\frac{y}{\frac{1}{8}}=\frac{z}{\frac{1}{20}}=\frac{x+y+z}{\frac{1}{5}+\frac{1}{8}+\frac{1}{20}}=-\frac{15}{\frac{3}{8}}=-40\)

\(\Rightarrow x=-40:5=-8\)

\(y=-40:8=-5\)

\(z=-40:20=-2\)

23 tháng 7 2016

\(\frac{x}{4}=\frac{y}{3}=\frac{z}{9}=\)\(\frac{x}{4}=\frac{3y}{9}=\frac{4z}{36}\)

Áp dụng tính chất của dãy tủ số bằng nhau ta có:

\(\frac{x}{4}=\frac{3y}{9}=\frac{4z}{36}=\frac{x-3y+4z}{4-9+36}=\frac{62}{31}=2\)

\(\frac{x}{4}=2=>x=8\)

\(\frac{3y}{9}=2=>y=6\)

\(\frac{4z}{36}=2=>z=18\)

23 tháng 7 2016

Ta có: a) \(\hept{\begin{cases}\frac{x}{4}=\frac{y}{3}=\frac{z}{9}\\x-3y+4x=62\end{cases}\Rightarrow\frac{x-3y+4z}{4-9+36}=\frac{62}{31}=2}\)

\(\Rightarrow\hept{\begin{cases}x=2.4=8\\y=2.3=6\\z=2.9=18\end{cases}}\)

20 tháng 6 2016

v~ tuần này ko giải nữa

20 tháng 6 2016

biến đổi về dạng chuẩn rồi dùng t/c của dãy tỉ số bằng nhau

10 tháng 8 2019

a, 5x = 8y => \(\frac{x}{8}=\frac{y}{5}\)

8y = 20z => 2y = 5z => \(\frac{y}{5}=\frac{z}{2}\)

=> \(\frac{x}{8}=\frac{y}{5}=\frac{z}{2}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{x}{8}=\frac{y}{5}=\frac{z}{2}=\frac{x-y-z}{8-5-2}=\frac{3}{1}=3\)

=> x = 24,y = 15,z = 6

b, \(\frac{6}{11}x=\frac{9}{2}y\)=> \(\frac{12x}{22}=\frac{99y}{22}\)=> 12x = 99y => 4x = 33y => \(\frac{x}{33}=\frac{y}{4}\)

\(\frac{9}{2}y=\frac{18}{5}z\)=> \(\frac{45y}{10}=\frac{36z}{10}\)=> 45y = 36z => 5y = 4z => \(\frac{y}{4}=\frac{z}{5}\)

=> \(\frac{x}{33}=\frac{y}{4}=\frac{z}{5}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{x}{33}=\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{-x}{-33}=\frac{y}{4}=\frac{z}{5}=\frac{-x+y+z}{-33+4+5}=\frac{120}{-24}=-5\)

=> x = -165 , y = -20 , z = -25

c, Đặt : \(\frac{x}{12}=\frac{y}{9}=\frac{z}{5}=k\)=> x = 12k , y = 9k , z = 5k

=> xyz = 12k . 9k . 5k

=> xyz = 540k3

=> 540k3 =20

=> k3 = 20/540

=> k3 = 1/27

=> k = 1/3

Do đó : x= 4 , y = 3 , z = 5/3

1 tháng 10 2016

a/ \(\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{x}{6}=\frac{y}{4}\) ; Suy ra \(\frac{x}{6}=\frac{y}{4}=\frac{z}{5}\) hay \(\frac{-x}{-6}=\frac{-y}{-4}=\frac{z}{5}\)

Áp dụng tính chất dãy tỉ số bằng nhau : 

\(\frac{-x}{-6}=\frac{-y}{-4}=\frac{z}{5}=\frac{-x-y+z}{-6-4+5}=\frac{-10}{-5}=2\)

Suy ra : x = 2.6 = 12

y = 2.4 = 8

z = 2.5 = 10

b,c,d tương tự

e/ \(2x=3y\Rightarrow\frac{x}{3}=\frac{y}{2}\) ; \(5y=7z\Rightarrow\frac{y}{7}=\frac{z}{5}\)

Tới đây bạn làm tương tự a,b,c,d

f tương tự.

g/ \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\Leftrightarrow\frac{x-1}{2}=\frac{2y-4}{6}=\frac{3z-9}{12}\)

Bạn áp dụng dãy tỉ số bằng nhau là ra.

h/ Áp dụng dãy tỉ số bằng nhau : 

\(\frac{12x-15y}{7}=\frac{20z-12x}{9}=\frac{15y-20z}{11}=\frac{12x-15y+20z-12x+15y-20z}{7+9+11}=0\)

Từ đó lại suy ra \(\begin{cases}12x=15y\\20z=12x\\15y=20z\end{cases}\)

Rút ra tỉ số và áp dụng dãy tỉ số bằng nhau.

 

 

1 tháng 10 2016

/vip/tranthimyduyen