Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(4x.\left(x-1\right)+3\sqrt{2}.\left(1-x\right)=0\)
\(\Rightarrow4x.\left(x-1\right)-3\sqrt{2}.\left(x-1\right)=0\)
\(\Rightarrow\left(x-1\right).\left(4x-3\sqrt{2}\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-1=0\\4x-3\sqrt{2}=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0+1\\4x=3\sqrt{2}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1\\x=3\sqrt{2}:4\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=1\\x=\frac{3\sqrt{2}}{4}\end{matrix}\right.\)
Vậy \(x\in\left\{1;\frac{3\sqrt{2}}{4}\right\}.\)
Chúc bạn học tốt!
\(d,x-5\sqrt{x}=0\)
\(ĐKXĐ:x\ge0\)
\(\Leftrightarrow\sqrt{x}\left(\sqrt{x}-5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x}=0\\\sqrt{x}-5=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\\sqrt{x}=5\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=25\end{cases}}\)(Thỏa mãn ĐKXĐ)
Vậy...
\(\dfrac{5}{x}+\dfrac{y}{4}=\dfrac{1}{8}\)
\(\Rightarrow\dfrac{5}{x}=\dfrac{1}{8}-\dfrac{y}{4}\)
\(\Rightarrow\dfrac{5}{x}=\dfrac{1}{8}-\dfrac{2y}{8}\)
\(\Rightarrow\dfrac{5}{x}=\dfrac{1-2y}{8}\)
\(\Rightarrow x\left(1-2y\right)=40\)
\(\Rightarrow x;1-2y\in U\left(40\right)\)
\(U\left(40\right)=\left\{\pm1;\pm2;\pm4;\pm5;\pm8;\pm10;\pm20;\pm40\right\}\)
Mà 1-2y lẻ nên:
\(\left\{{}\begin{matrix}1-2y=1\Rightarrow2y=0\Rightarrow y=0\\x=40\\1-2y=-1\Rightarrow2y=2\Rightarrow y=1\\x=-40\end{matrix}\right.\)
\(\left\{{}\begin{matrix}1-2y=5\Rightarrow2y=-4\Rightarrow y=-2\\x=8\\1-2y=-5\Rightarrow2y=6\Rightarrow y=3\\x=-8\end{matrix}\right.\)
b tương tự.
c) \(\left(x+1\right)\left(x-2\right)< 0\)
\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x+1< 0\Rightarrow x< -1\\x-2>0\Rightarrow x>2\end{matrix}\right.\\\left\{{}\begin{matrix}x+1>0\Rightarrow x>-1\\x-2< 0\Rightarrow x< 2\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow-1< x< 2\Rightarrow x\in\left\{0;1\right\}\)
d tương tự
Ta có : \(9^{x-1}=\frac{1}{9}\)
=> \(9^{x-1}=9^{-1}\)
=> x - 1 = -1
=> x = 0
ko biết bạn học mũ âm chưa nêu chưa thì mk xin lỗi
=>
\(4x\left(x-1\right)+3\sqrt{2}\left(x-1\right)=0\)
\(\Rightarrow\left(4x+3\sqrt{2}\right)\left(x-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}4x+3\sqrt{2}=0\\x-1=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}4x=-3\sqrt{2}\Rightarrow x=\frac{-3\sqrt{2}}{4}\\x=1\end{cases}}\)
Vậy ....
Chắc sai =))
\(4x\left(x-1\right)+3\sqrt{2}\left(1-x\right)=0\)
\(\Leftrightarrow4x^2-4x+3\sqrt{2}-3\sqrt{2}x=0\)
\(\Leftrightarrow4x^2-\left(4+3\sqrt{x}\right)x+3\sqrt{2}=0\)
Ta có: \(\Delta=\left(4+\sqrt{3}\right)^2-4.4.3\sqrt{2}=34-24\sqrt{2}\)
Vậy pt có 2 nghiệm:
\(x_1=\frac{4+3\sqrt{2}+34-24\sqrt{2}}{8}=\frac{38-21\sqrt{2}}{8}\)
\(x_2=\frac{4+3\sqrt{2}-34+24\sqrt{2}}{8}=\frac{-30+27\sqrt{2}}{8}\)