Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,
\(pt\Leftrightarrow\left(x-1-2\sqrt{x-1}+1\right)+\left(y-2-4\sqrt{y-2}+4\right)+\left(z-3-6\sqrt{z-3}+9\right)=0\)
\(\Leftrightarrow\left(\sqrt{x-1}-1\right)^2+\left(\sqrt{y-2}-2\right)^2+\left(\sqrt{z-3}-3\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}\sqrt{x-1}-1=0\\\sqrt{y-2}-2=0\\\sqrt{z-3}-3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\y=6\\z=12\end{cases}}\)
hình như...
b) \(x+y+z+8=2\sqrt{x-3}+4\sqrt{y-3}+6\sqrt{z-3}\)
\(\Leftrightarrow x-3+y-3+z-3+17=2\sqrt{x-3}+4\sqrt{y-3}+6\sqrt{z-3}\)
\(\Leftrightarrow\left(x-3-2\sqrt{x-3}+1\right)+\left(y-3-4\sqrt{y-3}+4\right)+\left(z-3-6\sqrt{z-3}+9\right)+3=0\)
\(\Leftrightarrow\left(\sqrt{x-3}-1\right)^2+\left(\sqrt{y-3}-2\right)^2+\left(\sqrt{z-3}-3\right)^2+3=0\) (vô nghiệm, VT >/3)
Kl: ptvn
a) \(x+y+z+8=2\sqrt{x-1}+4\sqrt{y-2}+6\sqrt{z-3}\)
\(\Leftrightarrow x-1-2\sqrt{x-1}+1+y-2-4\sqrt{y-2}+4+z-3-6\sqrt{z-3}+9=0\)
\(\Leftrightarrow\left(\sqrt{x-1}-1\right)^2+\left(\sqrt{y-2}-2\right)^2+\left(\sqrt{z-3}-3\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}\sqrt{x-1}-1=0\\\sqrt{y-2}-2=0\\\sqrt{z-3}-3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\y=6\\z=12\end{cases}}\)
b) \(\sqrt{x-26}+\sqrt{y+20}+\sqrt{z+3}=\frac{1}{2}\left(x+y+z\right)\)
\(\Leftrightarrow x+y+z-2\sqrt{x-26}-2\sqrt{y+20}-2\sqrt{z+3}=0\)
\(\Leftrightarrow x-26-2\sqrt{x-26}+1+y+20-2\sqrt{y+20}+1+z+3+2\sqrt{z+3}+1=0\)
\(\Leftrightarrow\left(\sqrt{x-26}-1\right)^2+\left(\sqrt{y+20}-1\right)^2+\left(\sqrt{z+3}-1\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}\sqrt{x-26}-1=0\\\sqrt{y+20}-1=0\\\sqrt{z+3}-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=27\\y=-19\\z=-2\end{cases}}\)
Lời giải:
\(x+y+z=2\sqrt{x-1}+4\sqrt{y-2}+6\sqrt{z-3}-8\)
\(\Leftrightarrow x+y+z-2\sqrt{x-1}-4\sqrt{y-2}-6\sqrt{z-3}+8=0\)
\(\Leftrightarrow (x-1-2\sqrt{x-1}+1)+(y-2-4\sqrt{y-2}+2^2)+(z-3-6\sqrt{z-3}+3^2)=0\)
\(\Leftrightarrow (\sqrt{x-1}-1)^2+(\sqrt{y-2}-2)^2+(\sqrt{z-3}-3)^2=0\)
Ta thấy vế trái có các số hạng luôn lớn hơn hoặc bằng $0$ với mọi \(x,y,z\in \) ĐKXĐ
Vế phải bằng 0
Do đó để 2 vế bằng nhau thì \(\left\{\begin{matrix} \sqrt{x-1}-1=0\\ \sqrt{y-2}-2=0\\ \sqrt{z-3}-3=0\end{matrix}\right.\Rightarrow \left\{\begin{matrix} x=2\\ y=6\\ z=12\end{matrix}\right.\)
ĐKXĐ : \(\hept{\begin{cases}x\ge1\\y\ge2\\z\ge3\end{cases}}\)
Với điều kiện trên thì pt đã cho tương đương với :
\(\left[\left(x-1\right)-2\sqrt{x-1}+1\right]+\left[\left(y-2\right)-4\sqrt{y-2}+4\right]+\left[\left(z-3\right)-6\sqrt{z-3}+9\right]=0\)
\(\Leftrightarrow\left(\sqrt{x-1}-1\right)^2+\left(\sqrt{y-2}-2\right)^2+\left(\sqrt{z-3}-3\right)^2=0\)
Mà \(\left(\sqrt{x-1}-1\right)^2\ge0,\left(\sqrt{y-2}-2\right)^2\ge0,\left(\sqrt{z-3}-3\right)^2\ge0\)
\(\Rightarrow\left(\sqrt{x-1}-1\right)^2+\left(\sqrt{y-2}-2\right)^2+\left(\sqrt{z-3}-3\right)^2\ge0\)
Vậy đẳng thức xảy ra khi \(\hept{\begin{cases}\left(\sqrt{x-1}-1\right)^2=0\\\left(\sqrt{y-2}-2\right)^2=0\\\left(\sqrt{z-3}-3\right)^2=0\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}x=2\\y=6\\z=12\end{cases}}\) (tmđk)
ĐKXĐ : {
x≥1 |
y≥2 |
z≥3 |
Với điều kiện trên thì pt đã cho tương đương với :
[(x−1)−2√x−1+1]+[(y−2)−4√y−2+4]+[(z−3)−6√z−3+9]=0
⇔(√x−1−1)2+(√y−2−2)2+(√z−3−3)2=0
Mà (√x−1−1)2≥0,(√y−2−2)2≥0,(√z−3−3)2≥0
⇒(√x−1−1)2+(√y−2−2)2+(√z−3−3)2≥0
Vậy đẳng thức xảy ra khi {
(√x−1−1)2=0 |
(√y−2−2)2=0 |
(√z−3−3)2=0 |
Sai đề kìa \(x+y+z+8=2\sqrt{x-1}+4\sqrt{y-2}+6\sqrt{z-3}\)
\(\Leftrightarrow x+y+z+8-2\sqrt{x-1}-4\sqrt{y-2}-6\sqrt{z-3}=0\)
\(\Leftrightarrow\left(x-2\sqrt{x-1}+1-1\right)+\left(y-4\sqrt{y-2}+4-2\right)+\left(z-6\sqrt{z-3}+9-3\right)=0\)
\(\Leftrightarrow\left(\sqrt{x-1}-1\right)^2+\left(\sqrt{y-2}-2\right)^2+\left(\sqrt{z-3}-3\right)^2=0\)
\(\Rightarrow\hept{\begin{cases}\sqrt{x-1}-1=0\\\sqrt{y-2}-2=0\\\sqrt{z-3}-3=0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}\sqrt{x-1}=1\\\sqrt{y-2}=2\\\sqrt{z-3}=3\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=2\\y=6\\z=12\end{cases}}\)
Sai đề kìa x+y+z+8=2√x−1+4√y−2+6√z−3
⇔x+y+z+8−2√x−1−4√y−2−6√z−3=0
⇔(x−2√x−1+1−1)+(y−4√y−2+4−2)+(z−6√z−3+9−3)=0
⇔(√x−1−1)2+(√y−2−2)2+(√z−3−3)2=0
⇒{
√x−1−1=0 |
√y−2−2=0 |
√z−3−3=0 |
⇒{
√x−1=1 |
√y−2=2 |
√z−3=3 |