Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=\frac{\left(x-1\right)-2.\left(y-2\right)+3.\left(z-3\right)}{2-2.3+3.4}\)
\(=\frac{x-1-2y+4+3z-9}{2-6+12}=\frac{\left(x-2y+3z\right)+\left(-1+4-9\right)}{8}\)
\(=\frac{14-6}{8}=1\)
suy ra: \(\frac{x-1}{2}=1\Rightarrow x-1=2\Rightarrow x=3\)
\(\frac{y-2}{3}=1\Rightarrow y-2=3\Rightarrow x=5\)
\(\frac{z-3}{4}=1\Rightarrow z-3=4\Rightarrow z=7\)
Vì x/2 = y/3 nên x/8=y/12 ( nhân hai vế với 1/4) (1)
Vì y /4 =z/5 nên y/12 = z/15 ( nhân hai vế với 1/3) (2)
Từ (1) và (2) suy ra x/8=y/12=z/15
Theo tính chất dãy tỉ số bằng nhau
x/8=y/12=z/15= (x-2y+3z)/(8-2.12+3.15) = 92/ 29
suy ra x = (92.8):29 ; y = (92.12): 29; z = (92. 15) :29
\(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{8}=\frac{y}{12}\left(1\right)\)
\(\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{15}\left(2\right)\)
Từ (1) và (2) => \(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\Rightarrow\frac{x}{8}=\frac{2y}{24}=\frac{3z}{45}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x}{8}=\frac{2y}{24}=\frac{3z}{45}=\frac{x-2y+3z}{8-24+45}=\frac{92}{29}\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{8}=\frac{92}{29}\\\frac{y}{12}=\frac{92}{29}\\\frac{z}{15}=\frac{92}{29}\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{736}{29}\\y=\frac{1104}{29}\\z=\frac{1380}{29}\end{cases}}}\)
Ta có: \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\)
\(\Leftrightarrow\frac{x-1}{2}=\frac{2y-4}{6}=\frac{3z-9}{12}\)
Ta có: x-2y+3z=14
Áp dụng tính chất của dãy tỉ só bằng nhau, ta được:
\(\frac{x-1}{2}=\frac{2y-4}{6}=\frac{3z-9}{12}=\frac{x-1-2y+4+3z-9}{2-6+12}=\frac{14-6}{8}=\frac{8}{8}=1\)
Do đó:
\(\left\{{}\begin{matrix}\frac{x-1}{2}=1\\\frac{2y-4}{6}=1\\\frac{3z-9}{12}=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-1=2\\2y-4=6\\3z-9=12\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\2y=10\\3z=21\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=5\\z=7\end{matrix}\right.\)
Vậy: (x,y,z)=(3;5;7)
a)Ta có: \(2x=3y;5y=7z\)và \(x-y-z=-27\)
\(\Rightarrow\frac{x}{3}=\frac{y}{2};\frac{y}{7}=\frac{z}{5}\)và\(x-y-z=-27\)
\(\Rightarrow\frac{x}{21}=\frac{y}{14}=\frac{z}{10}\)và \(x-y-z=-27\)
Áp dụng tính chất của dãy tỉ số bằng nhau,ta có:
\(\frac{x}{21}=\frac{y}{14}=\frac{z}{10}=\frac{x-y-z}{21-14-10}=\frac{-27}{-3}=9\)
Ta có:\(\frac{x}{21}=9\Rightarrow x=9.21=189\)
\(\frac{y}{14}=9\Rightarrow y=9.14=126\)
\(\frac{z}{10}=9\Rightarrow z=9.10=90\)
Vậy:\(x=189;y=126\)và\(z=90\)
b) \(\frac{x}{4}=\frac{y}{5}=\frac{z}{6}\)và\(x^2-2y^2+z^2=18\)
\(\Rightarrow\frac{x^2}{16}=\frac{2y^2}{50}=\frac{z^2}{36}\)và\(x^2-2y^2+z^2=18\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{x^2}{16}=\frac{2y^2}{50}=\frac{z^2}{36}=\frac{x^2-2y^2+z^2}{16-50+36}=\frac{18}{2}=9\)
Ta có:\(\frac{x^2}{16}=9\Rightarrow x^2=144\Rightarrow\orbr{\begin{cases}x=12\\x=-12\end{cases}}\)
\(\frac{2y^2}{50}=9\Rightarrow2y^2=450\Rightarrow y^2=225\Rightarrow\orbr{\begin{cases}y=15\\y=-15\end{cases}}\)
\(\frac{z^2}{36}=9\Rightarrow z^2=324\Rightarrow\orbr{\begin{cases}z=18\\z=-18\end{cases}}\)
Vậy: \(x=12;y=15;z=18\)hoặc \(x=-12;y=-15;z=-18\)
\(x-1\over2\)=\(y-2\over3\)=\(z-3\over4\)
=> \(x-1\over2\)=\(2.(y-2)\over2.3\)=\(3.(z-3)\over3.4\)
=> \(x-1\over2\)=\(2y-4\over6\)=\(3z-9\over12\)
\(Áp dụng tính chất của dãy tỉ số bằng nhau ta được:\)
\(x-1\over2\)=\(2y-4\over6\)=\(3z-9\over12\)=\(x-1-2y-4+3z-9\over2-6+12\)=\(1\)