\(\dfrac{x^2}{2}+\dfrac{y^2}{3}+\dfrac{z^2}{4}=\dfrac{x^2+y^2+z^2...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
19 tháng 12 2020

\(\Leftrightarrow\dfrac{x^2}{2}-\dfrac{x^2}{5}+\dfrac{y^2}{3}-\dfrac{y^2}{5}+\dfrac{z^2}{4}-\dfrac{z^2}{5}=0\)

\(\Leftrightarrow\dfrac{3}{10}x^2+\dfrac{2}{15}y^2+\dfrac{1}{20}z^2=0\)

\(\Leftrightarrow x=y=z=0\)

23 tháng 11 2018

B1:

pt <=> \(\dfrac{3x^2}{10}+\dfrac{2y^2}{15}+\dfrac{z^2}{20}=0\)

<=> x = y = z = 0

B2: Áp dụng bđt Cô-si:

\(\left(x^2+\dfrac{1}{x^2}\right)+\left(y^2+\dfrac{1}{y^2}\right)\ge2+2=4\)

Dấu "=" xảy ra <=> x2 = y2 = 1

23 tháng 11 2018

s bài 1 lại ra đc x=y=z=0 giải thik giúp mk vs

30 tháng 12 2017

Violympic toán 8

30 tháng 12 2017

Cách 2:

\(\dfrac{x^2}{2}+\dfrac{y^2}{3}+\dfrac{z^2}{4}=\dfrac{x^2+y^2+z^2}{5}\)

\(\Rightarrow\dfrac{30x^2}{60}+\dfrac{20y^2}{60}+\dfrac{15z^2}{60}=\dfrac{12\left(x^2+y^2+z^2\right)}{60}\)

\(\Rightarrow\dfrac{30x^2+20y^2+15z^2}{60}=\dfrac{12x^2+12y^2+12z^2}{60}\)

\(\Rightarrow30x^2+20y^2+15z^2=12x^2+12y^2+12z^2\)

\(\Rightarrow30x^2-12x^2+20y^2-12y^2+15z^2-12z^2=0\)

\(\Rightarrow18x^2+8y^2+3z^2=0\)

Ta có :

\(18x^2\ge0\forall x\) \(;8y^2\ge0\forall y;3z^2\ge0\forall z\)

Dấu = xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}18x^2=0\\8y^2=0\\3z^2=0\end{matrix}\right.\Leftrightarrow x=y=z=0\)

Vậy x = y = z =0

6 tháng 4 2018

Ta có : \(\dfrac{x^2}{2}+\dfrac{y^2}{3}+\dfrac{z^2}{4}=\dfrac{x^2+y^2+z^2}{5}\)

\(\Leftrightarrow\dfrac{30x^2+20y^2+15z^2}{60}=\dfrac{12\left(x^2+y^2+z^2\right)}{60}\)

\(\Leftrightarrow30x^2-18x^2+20y^2-12y^2+15z^2-12z^2=0\)

\(\Leftrightarrow18x^2+8y^2+3z^2=0\)

\(\left\{{}\begin{matrix}18x^2\ge0\\8y^2\ge0\\3z^2\ge0\end{matrix}\right.\Rightarrow18x^2+8y^2+3z^2\ge0\)

Dấu '' = '' xảy ra \(\Leftrightarrow x=y=z=0\)

Vậy với \(x=y=z=0\) thì \(\dfrac{x^2}{2}+\dfrac{y^2}{3}+\dfrac{z^2}{4}=\dfrac{x^2+y^2+z^2}{5}\)

2 tháng 8 2017

a/\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{xy}{2y}=\dfrac{54}{2y}\)

\(\Rightarrow2y\cdot y=54\cdot3\Rightarrow2y^2=162\Rightarrow y^2=\dfrac{162}{2}=81\)

Mà y > 0 (gt) => \(y=\sqrt{81}=9\Rightarrow x=\dfrac{54}{9}=6\)

Vậy..............

b/ \(\dfrac{x}{5}=\dfrac{y}{3}\Rightarrow\dfrac{x^2}{25}=\dfrac{y^2}{9}=\dfrac{x^2-y^2}{25-9}=\dfrac{4}{16}=\dfrac{1}{4}\)

\(\Rightarrow\left\{{}\begin{matrix}x^2=\dfrac{1}{4}\cdot25=\dfrac{25}{4}\\y^2=\dfrac{1}{4}\cdot9=\dfrac{9}{4}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\pm\sqrt{\dfrac{25}{4}}=\pm\dfrac{5}{2}\\y=\pm\sqrt{\dfrac{9}{4}}=\pm\dfrac{3}{2}\end{matrix}\right.\)

Vậy.............

c/ x/2 = y/3 => x/10 = y/15

y/5 = z/7 => y/15 = z/21

=> x/10 = y/15 = z/21

Áp dụng t/c của dãy tỉ số = nhau là ra....

17 tháng 5 2017

Áp dụng bđt Cauchy, ta có:

\(\dfrac{x^2}{y^2}+\dfrac{y^2}{z^2}+\dfrac{z^2}{x^2}\ge\sqrt{\dfrac{x^2}{y^2}\times\dfrac{y^2}{z^2}}+\sqrt{\dfrac{y^2}{z^2}\times\dfrac{z^2}{x^2}}+\sqrt{\dfrac{x^2}{y^2}\times\dfrac{z^2}{x^2}}=\dfrac{x}{z}+\dfrac{y}{x}+\dfrac{z}{y}\left(\text{đ}pcm\right)\)

Dấu "=" xảy ra khi x = y = z

3 tháng 7 2018

a/ +) \(\dfrac{x}{3}=\dfrac{y}{4}\Leftrightarrow\dfrac{x}{9}=\dfrac{y}{12}\)\(\left(1\right)\)

+) \(\dfrac{y}{3}=\dfrac{z}{5}\Leftrightarrow\dfrac{y}{12}=\dfrac{z}{20}\left(2\right)\)

Từ \(\left(1\right)+\left(2\right)\Leftrightarrow\dfrac{x}{9}=\dfrac{y}{12}=\dfrac{z}{20}\)

\(\Leftrightarrow\dfrac{2x}{18}=\dfrac{3y}{36}=\dfrac{z}{20}\)

Theo t/c dãy tỉ số bằng nhau ta có :

\(\dfrac{2x}{18}=\dfrac{3y}{36}=\dfrac{z}{20}=\dfrac{2x-3y+z}{18-36+20}=\dfrac{6}{2}=3\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{9}=3\\\dfrac{y}{12}=3\\\dfrac{z}{20}=3\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=27\\y=36\\z=60\end{matrix}\right.\)

Vậy ..

b/ \(2x=3y=5z\)

\(\Leftrightarrow\dfrac{2x}{30}=\dfrac{3y}{30}=\dfrac{5z}{30}\)

\(\Leftrightarrow\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{6}\)

Theo t/c dãy tỉ số bằng nhau tcos :

\(\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{6}=\dfrac{x+y-z}{15+10-6}=\dfrac{95}{19}=5\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{15}=5\\\dfrac{y}{10}=5\\\dfrac{z}{6}=5\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=75\\y=50\\z=30\end{matrix}\right.\)

Vậy..

c/ tương tự

3 tháng 7 2018

bạn có thể giải cho mik phần c đc ko

22 tháng 8 2017

1)

\(\Leftrightarrow\left(x^2-2+\dfrac{1}{x^2}\right)+\left(y^2-2+\dfrac{1}{y^2}\right)+z^2=0\)

\(\Leftrightarrow\left(x-\dfrac{1}{x}\right)^2+\left(y-\dfrac{1}{y}\right)^2+z^2=0\)

\(\left\{{}\begin{matrix}x-\dfrac{1}{x}=0\Rightarrow\left|x\right|=1\\y-\dfrac{1}{y}=0\Rightarrow\left|y\right|=1\\z=0\end{matrix}\right.\)

22 tháng 8 2017

dk\(x,y,z,a,b,c\ne0\)\(\left\{{}\begin{matrix}\dfrac{a}{x}=A\\\dfrac{b}{y}=B\\\dfrac{c}{z}=C\end{matrix}\right.\) \(\Rightarrow A,B,C\ne0\)

\(\left\{{}\begin{matrix}A+B+C=2\\\dfrac{1}{A}+\dfrac{1}{B}+\dfrac{1}{C}=0\end{matrix}\right.\)

\(\left\{{}\begin{matrix}A^2+B^2+C^2+2\left(AB+BC+AC\right)=4\\\dfrac{ABC}{A}+\dfrac{ABC}{B}+\dfrac{ABC}{C}=0\end{matrix}\right.\)

\(\left\{{}\begin{matrix}AB+BC+AC=0\\A^2+B^2+C^2=4\end{matrix}\right.\)

\(\left(\dfrac{a}{x}\right)^2+\left(\dfrac{b}{y}\right)^2+\left(\dfrac{c}{z}\right)^2=4\)

15 tháng 7 2017

a, \(\dfrac{x}{2}=\dfrac{y}{4}=\dfrac{z}{5}\Rightarrow\dfrac{x^2}{4}=\dfrac{y^2}{16}=\dfrac{z^2}{25}\)

Theo t/c dãy tỉ số bằng nhau, ta có:

\(\dfrac{x^2}{4}=\dfrac{y^2}{16}=\dfrac{z^2}{25}=\dfrac{x^2+y^2}{4+16}=\dfrac{2000}{20}=100\)

\(\Rightarrow\left\{{}\begin{matrix}x^2=100.4=400\\y^2=100.16=1600\\z^2=100.25=2500\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\pm20\\y=\pm40\\z=\pm50\end{matrix}\right.\)

Do \(\dfrac{x}{2}=\dfrac{y}{4}=\dfrac{z}{5}\Rightarrow\left\{{}\begin{matrix}x=20\\y=40\\z=50\end{matrix}\right.\) hoặc \(\left\{{}\begin{matrix}x=-20\\y=-40\\z=-50\end{matrix}\right.\)

Vậy ...

b, \(\dfrac{x-1}{2}=\dfrac{y-2}{3}=\dfrac{z-3}{4}=\dfrac{2y-4}{6}=\dfrac{3z-9}{12}\)

Theo t/c dãy tỉ số bằng nhau, ta có:

\(\dfrac{x-1}{2}=\dfrac{y-2}{3}=\dfrac{z-3}{4}=\dfrac{2y-4}{6}=\dfrac{3z-9}{12}\)

\(=\dfrac{x-1-2y+4+3z-9}{2-6+12}=\dfrac{14-6}{8}=\dfrac{8}{8}=1\)

\(\Rightarrow\left\{{}\begin{matrix}x-1=1.2=2\\y-2=1.3=3\\z-3=1.4=4\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=3\\y=5\\z=7\end{matrix}\right.\)

Vậy ...

c, \(x-z=-2\Rightarrow x+2=z\)

Do đó \(y.z=12\Leftrightarrow y.\left(x+2\right)=12\Rightarrow xy+2y=12\Rightarrow6+2y=12\)

\(\Rightarrow y=3\Rightarrow x.3=6\Rightarrow x=2\Rightarrow2-z=-2\Rightarrow z=4\)

Vậy x=2; y=3; z=4