\(\begin{cases} \dfrac{3x-2y}{5}=\dfrac{2z-5x}{3}=\dfrac{5y-3z}{...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 9 2018

\(\dfrac{3x-2y}{5}=\dfrac{2z-5x}{3}=\dfrac{5y-3z}{2}\)

\(=\dfrac{15x-10y}{25}=\dfrac{6z-15x}{9}=\dfrac{10y-6z}{4}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có :

\(\dfrac{3x-2y}{5}=\dfrac{2z-5x}{3}=\dfrac{5y-3z}{2}=\dfrac{15x-10y}{25}=\dfrac{6z-15x}{9}=\dfrac{10y-6z}{4}\)

\(=\dfrac{15x-10y+6z-15x+10y-6z}{25+9+4}=0\)

\(3x=2y\)\(\dfrac{x}{2}=\dfrac{y}{3}\)

\(2z=5x\)\(\dfrac{x}{2}=\dfrac{z}{5}\)

\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có :

\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}=\dfrac{2x}{6}=\dfrac{3y}{9}=\dfrac{5z}{25}\)\(=\dfrac{2x+3y-5z}{6+9-25}=\dfrac{-60}{-10}=6\)

\(\dfrac{x}{2}=6\)\(x=12\)

\(\dfrac{y}{3}=6\)\(y=18\)

\(\dfrac{z}{5}=6\)\(z=30\)

Vậy \(x=12;y=18;z=30\)

25 tháng 9 2018

\(x^3=\dfrac{y^3}{8}=\dfrac{z^3}{27}\)

\(x=\dfrac{y}{2}=\dfrac{z}{3}\)

\(\dfrac{x^2}{1}=\dfrac{y^2}{4}=\dfrac{z^2}{9}=\dfrac{2x^2}{2}=\dfrac{7y^2}{28}=\dfrac{5z^2}{45}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có

\(\dfrac{x^2}{1}=\dfrac{y^2}{4}=\dfrac{z^2}{9}=\dfrac{2x^2}{2}=\dfrac{7y^2}{28}=\dfrac{5z^2}{45}=\dfrac{2x^2+7y^2+5z^2}{2+28-45}=\dfrac{-17}{-15}=\dfrac{17}{15}\)

\(\dfrac{x^2}{1}=\dfrac{17}{15};\dfrac{y^2}{4}=\dfrac{17}{15};\dfrac{z^2}{9}=\dfrac{17}{15}\)

Còn lại bạn tự làm nha

9 tháng 8 2017

Giải:
Ta có: \(\dfrac{3x-2y}{5}=\dfrac{5y-3z}{2}=\dfrac{2z-5x}{2}\)

\(\Rightarrow\dfrac{15x-10y}{25}=\dfrac{10y-6z}{4}=\dfrac{6z-15x}{6}\)

Áp dụng tính chất dãy tỉ số bằng nhau có:

\(\Rightarrow\dfrac{15x-10y}{25}=\dfrac{10y-6z}{4}=\dfrac{6z-15x}{6}=\dfrac{15x-10y+10y-6z+6z-15x}{25+4+6}=0\)

\(\Rightarrow\left\{{}\begin{matrix}15x-10y=0\\10y-6z=0\\6z-15x=0\end{matrix}\right.\Rightarrow15x=10y=6z\)

\(\Rightarrow\dfrac{15x}{30}=\dfrac{10y}{30}=\dfrac{6z}{30}\Rightarrow\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}\)

Áp dụng tính chất dãy tỉ số bằng nhau có:

\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}=\dfrac{10x}{20}=\dfrac{3y}{9}=\dfrac{2z}{10}=\dfrac{10x-3y-2z}{20-9-10}=\dfrac{5}{1}=5\)

\(\Rightarrow\left\{{}\begin{matrix}x=10\\y=15\\z=25\end{matrix}\right.\)

Vậy...

9 tháng 8 2017

\(\dfrac{3x-2y}{5}=\dfrac{5y-3z}{2}=\dfrac{2z-5x}{2}\)

\(\Rightarrow\dfrac{5\left(3x-2y\right)}{25}=\dfrac{2\left(5y-3z\right)}{4}=\dfrac{3\left(2z-5x\right)}{6}\)

\(\Rightarrow\dfrac{15x-10y}{25}=\dfrac{10y-6z}{4}=\dfrac{6z-15x}{6}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{15x-10y}{25}=\dfrac{10y-6z}{4}=\dfrac{6z-15x}{6}\)

\(=\dfrac{15x-10y+10y-6z+6z-15x}{25+4+6}\)

\(=0\)

\(\Rightarrow\left\{{}\begin{matrix}3x=2y\Rightarrow\dfrac{x}{2}=\dfrac{y}{3}\\5y=3z\Rightarrow\dfrac{y}{3}=\dfrac{z}{5}\\2z=5x\Rightarrow\dfrac{z}{5}=\dfrac{x}{2}\end{matrix}\right.\)

\(\Rightarrow\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}\)

\(\Rightarrow\dfrac{10x}{20}=\dfrac{3y}{9}=\dfrac{2z}{10}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{10x}{20}=\dfrac{3y}{9}=\dfrac{2z}{10}=\dfrac{10x-3y-2z}{20-9-10}=\dfrac{5}{1}=5\)

\(\Rightarrow\left\{{}\begin{matrix}x=5.2=10\\y=5.3=15\\z=5.5=25\end{matrix}\right.\)

26 tháng 10 2017

a) \(\dfrac{x^3}{8}=\dfrac{y^3}{64}=\dfrac{z^3}{216}\)

Từ \(\dfrac{x^3}{8}=\dfrac{y^3}{64}=\dfrac{z^3}{216}\Rightarrow\dfrac{x^3}{2^3}=\dfrac{y^3}{4^3}=\dfrac{z^3}{6^3}\)

\(\Leftrightarrow\dfrac{x^2}{2^2}=\dfrac{y^2}{4^2}=\dfrac{z^2}{6^2}\Leftrightarrow\dfrac{x^2}{4}=\dfrac{y^2}{16}=\dfrac{z^2}{36}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\dfrac{x^2}{4}=\dfrac{y^2}{16}=\dfrac{z^2}{36}=\dfrac{x^2+y^2+z^2}{4+16+36}=\dfrac{14}{56}=\dfrac{1}{4}\)

\(\Rightarrow\dfrac{x^2}{4}=\dfrac{1}{4}\Rightarrow x^2=\dfrac{1}{4}\cdot4\Rightarrow x^2=1\Rightarrow x=1\)

\(\dfrac{y^2}{16}=\dfrac{1}{4}\Rightarrow y^2=\dfrac{1}{4}\cdot16\Rightarrow y^2=4\Rightarrow y=2\)

\(\dfrac{z^2}{36}=\dfrac{1}{4}\Rightarrow z^2=\dfrac{1}{4}\cdot36\Rightarrow z^2=9\Rightarrow z^2=3\)

Xin lỗi mình chỉ làm được câu a)

26 tháng 10 2017

buồn nhỉ

28 tháng 11 2017

g,

\(\dfrac{3x-2y}{5}=\dfrac{2z-5x}{3}=\dfrac{5y-3z}{2}\)

\(\Rightarrow\dfrac{15x-10y}{25}=\dfrac{6z-15x}{9}=\dfrac{10y-6z}{4}\)

Áp dụng tính chất của dãy tỉ số bằng nhau

\(\dfrac{15x-10y}{25}=\dfrac{6z-15x}{9}=\dfrac{10y-6z}{4}=\dfrac{15x-10y+6z-15x+10y-6z}{25+9+4}=0\)\(\Rightarrow3x-2y=2z-5x=5y-3z=0\)

* 3x - 2y = 0 \(\Rightarrow3x=2y\Rightarrow\dfrac{x}{2}=\dfrac{y}{3}\)

* 2z - 5x = 0 \(\Rightarrow2z=5x\Rightarrow\dfrac{x}{2}=\dfrac{z}{5}\)

Áp dụng tính chất của dãy tỉ số bằng nhau

\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}=\dfrac{x+y+z}{2+3+5}=\dfrac{50}{10}=5\)

\(\cdot\dfrac{x}{2}=5\Rightarrow x=10\)

\(\cdot\dfrac{y}{3}=5\Rightarrow y=15\)

\(\cdot\dfrac{z}{5}=5\Rightarrow z=25\)

28 tháng 11 2017

câu h thiếu điều kiện rồi bạn ơi

24 tháng 12 2018

biết??????

30 tháng 10 2018

a) Ta có: 3x = 2y; 4x = 2z

\(\dfrac{x}{2}=\dfrac{y}{3};\dfrac{x}{2}=\dfrac{z}{4}\)

\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\) và x + y + z = 27

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=\dfrac{x+y+z}{2+3+4}=\dfrac{27}{9}=3\)

\(\dfrac{x}{2}=3\) ⇒ x = 6

\(\dfrac{y}{3}=3\) ⇒ y = 9

\(\dfrac{z}{4}=3\) ⇒ z = 12

Vậy x = 6 ; y = 9 ; z = 12

b) Ta có: \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\)

\(\dfrac{x^2}{4}=\dfrac{y^2}{9}=\dfrac{z^2}{16}\)

\(\dfrac{2x^2}{8}=\dfrac{3y^2}{27}=\dfrac{5z^2}{80}\)

và 2x2 + 3y2 - 5z2 = -405

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\dfrac{2x^2}{8}=\dfrac{3y^2}{27}=\dfrac{5z^2}{80}\)=\(\dfrac{2x^2+3y^2-5z^2}{8+27-80}=\dfrac{-405}{-45}=9\)

+) \(\dfrac{2x^2}{8}=9\) ⇒ 2x2 = 72 ⇒ x2 = 72 : 2

⇒ x2 = 36 ⇒ x = 6 hoặc x = -6

+) \(\dfrac{3y^2}{27}=9\) ⇒ 3y2 = 243 ⇒ y2 = 243 : 3

⇒ y2 = 81 ⇒ y = 9 hoặc y = -9

+) \(\dfrac{5z^2}{80}=9\) ⇒ 5z2 = 720 ⇒ z2 = 720 : 5

⇒ z2 = 144 ⇒ z = 12 hoặc z = -12

Vậy...................................( bạn tự vậy nhé )

c) Giống câu a ( bạn tự chép lại )

d) Mik ko bt lm

30 tháng 10 2018

CÂU TRẢ LỜI RẤT HAY BẠN NÀO ĐANG CẦN THÌ THAM KHẢO NHÉ!!!!!!!!

25 tháng 9 2018

Đặt \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}\)=k

<=>\(\dfrac{x}{2}=k\)=> x= 2k

<=>\(\dfrac{y}{3}\)\(=k\) => y= 3k

<=>\(\dfrac{z}{5}=k\) => z= 5k

Thay x= 2k, y=3k, z= 5k vào biểu thức xyz=810

Ta có: 2k . 3k . 5k = 810

<=> \(30k^3\) = 810

<=> \(k^3\) = 27

=> k = \(\sqrt[3]{27}\) = 3

\(\dfrac{x}{2}=3\) => x = 2 . 3 = 6

\(\dfrac{y}{3}=3\) => y = 3 . 3 = 9

\(\dfrac{z}{5}=3\) => z = 3 . 5 = 5

Vậy x = 6, y = 9, z = 15