Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ Ta có x, y tỉ lệ với 2, 3 => \(\frac{x}{2}=\frac{y}{3}\)
và \(x+y=-15\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{x}{2}=\frac{y}{3}=\frac{x+y}{2+3}=\frac{-15}{5}=-3\)
=> \(\hept{\begin{cases}\frac{x}{2}=-3\\\frac{y}{3}=-3\end{cases}}\)=> \(\hept{\begin{cases}x=-6\\y=-9\end{cases}}\)
b/ Ta có \(\frac{x}{y}=\frac{7}{20}\)
=> \(\frac{x}{7}=\frac{y}{20}\)
=> \(\frac{x}{7}.\frac{1}{7}=\frac{y}{20}.\frac{1}{7}\)
=> \(\frac{x}{49}=\frac{y}{140}\)(1)
và \(\frac{y}{z}=\frac{7}{3}\)
=> \(\frac{y}{7}=\frac{z}{3}\)
=> \(\frac{y}{7}.\frac{1}{20}=\frac{z}{3}.\frac{1}{20}\)
=> \(\frac{y}{140}=\frac{z}{60}\)(2)
Từ (1) và (2)
=> \(\frac{x}{49}=\frac{y}{140}=\frac{z}{60}\)
Đến đây là thiếu đề rồi bạn!!!
c/ Ta có \(\frac{3}{y}=\frac{7}{x}\)
=> \(\frac{y}{3}=\frac{x}{7}\)
và \(x+16=y\)
=> \(x-y=-16\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{x}{7}=\frac{y}{3}=\frac{x-y}{7-3}=\frac{-16}{4}=-4\)
=> \(\hept{\begin{cases}\frac{x}{7}=-4\\\frac{y}{3}=-4\end{cases}}\)=> \(\hept{\begin{cases}x=-28\\y=-12\end{cases}}\)
d/ Ta có x, y tỉ lệ với 5 và 3
=> \(\frac{x}{5}=\frac{y}{3}\)
=> \(\frac{x^2}{25}=\frac{y^2}{9}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{x^2}{25}=\frac{y^2}{9}=\frac{x^2-y^2}{25-9}=\frac{4}{16}=\frac{1}{4}\)
=> \(\hept{\begin{cases}\frac{x}{5}=\frac{1}{4}\\\frac{y}{3}=\frac{1}{4}\end{cases}}\)=> \(\hept{\begin{cases}x=\frac{5}{4}\\y=\frac{3}{4}\end{cases}}\)
e/ Thiếu đề bạn ơi!!!
f/ Ta có \(3x=2y\)
=> \(\frac{x}{2}=\frac{y}{3}\)
=> \(\frac{x}{2}.\frac{1}{5}=\frac{y}{3}.\frac{1}{5}\)
=> \(\frac{x}{10}=\frac{y}{15}\)(1)
và \(7y=5z\)
=> \(\frac{y}{5}=\frac{z}{7}\)
=> \(\frac{y}{5}.\frac{1}{3}=\frac{z}{7}.\frac{1}{3}\)
=> \(\frac{y}{15}=\frac{z}{21}\)(2)
Từ (1) và (2)
=> \(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)
=> \(\frac{2x}{20}=\frac{y}{15}=\frac{z}{21}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{2x}{20}=\frac{y}{15}=\frac{z}{21}=\frac{2x+y-z}{20+15-21}=\frac{-28}{14}=-2\)
=> \(\hept{\begin{cases}\frac{x}{10}=-2\\\frac{y}{15}=-2\\\frac{z}{21}=-2\end{cases}}\)=> \(\hept{\begin{cases}x=-20\\y=-30\\z=-42\end{cases}}\)
a) Vì \(2x=3y\Rightarrow\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{x}{21}=\frac{y}{14}\)
\(3y=7z\Rightarrow\frac{y}{7}=\frac{z}{3}\Rightarrow\frac{y}{14}=\frac{z}{6}\)
\(\Rightarrow\frac{x}{21}=\frac{y}{14}=\frac{z}{6}\) và x+y-z=58
APa dụng TC dãy TSBN ta có
\(\frac{x}{21}=\frac{y}{14}=\frac{z}{6}=\frac{x+y-z}{21+14-6}=\frac{58}{29}=2\)
\(\Rightarrow x=42;y=28;z=12\)
Các câu còn lại tương tự
1) \(\Rightarrow\dfrac{x}{8}=\dfrac{y}{12}=\dfrac{z}{15}\)
Áp dụng t/c dtsbn:
\(\dfrac{x}{8}=\dfrac{y}{12}=\dfrac{z}{15}=\dfrac{x-y+z}{8-12+15}=\dfrac{10}{11}\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{8}=\dfrac{10}{11}\\\dfrac{y}{12}=\dfrac{10}{11}\\\dfrac{z}{15}=\dfrac{10}{11}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{80}{11}\\y=\dfrac{120}{11}\\z=\dfrac{150}{11}\end{matrix}\right.\)
2) \(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{3}=\dfrac{y}{4}\\\dfrac{y}{5}=\dfrac{z}{7}\end{matrix}\right.\) \(\Rightarrow\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{28}\)
Áp dụng t/c dtsbn:
\(\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{28}=\dfrac{2x}{30}=\dfrac{3y}{60}=\dfrac{2x+3y-z}{30+60-28}=\dfrac{136}{62}=\dfrac{68}{31}\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{15}=\dfrac{68}{31}\\\dfrac{y}{20}=\dfrac{68}{31}\\\dfrac{z}{28}=\dfrac{68}{31}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{1020}{31}\\y=\dfrac{1360}{31}\\z=\dfrac{1904}{31}\end{matrix}\right.\)
3) \(\Rightarrow\dfrac{3x-9}{15}=\dfrac{5y-25}{5}=\dfrac{7z+21}{49}\)
Áp dụng t/c dtsbn:
\(\dfrac{3x-9}{15}=\dfrac{5y-25}{5}=\dfrac{7z+21}{49}=\dfrac{3x+5y-7z-9-25-21}{15+5-49}=-\dfrac{45}{29}\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{3x-9}{15}=-\dfrac{45}{29}\\\dfrac{5y-25}{5}=-\dfrac{45}{29}\\\dfrac{7z+21}{49}=-\dfrac{45}{29}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=-\dfrac{138}{29}\\y=\dfrac{100}{29}\\z=-\dfrac{402}{29}\end{matrix}\right.\)
1) a) => \(\frac{x}{2}=\frac{y}{5}vàx+y=21\)
Áp dụng tính chất của dãy tỉ số bằng nhau , ta có :
\(\frac{x}{2}=\frac{y}{5}=\frac{x+y}{2+5}=\frac{21}{7}=3\)
* \(\frac{x}{2}=3\Rightarrow x=2\cdot3=6\)
* \(\frac{y}{5}=3\Rightarrow y=3\cdot5=15\)
c) =.> \(\frac{x}{7}=\frac{y}{5}vày-x=12\)
Áp dụng tính chất của dãy tỉ số bằng nhau , ta có :
\(\frac{x}{7}=\frac{y}{5}=\frac{y-x}{5-7}=\frac{12}{-2}=-6\)
*\(\frac{x}{7}=-6\Rightarrow x=-6\cdot7=-42\)
*\(\frac{y}{5}=-6\Rightarrow y=-6\cdot5=-30\)
a, Ta có : 3x = 5y => \(\dfrac{x}{5}=\dfrac{y}{3}\)
Theo tc dãy tỉ số bằng nhau
\(\dfrac{x}{5}=\dfrac{y}{3}=\dfrac{x+y}{5+3}=\dfrac{40}{8}=5\Rightarrow x=25;y=15\)
b, Ta có : \(6x=10y=15z\Rightarrow\dfrac{6x}{30}=\dfrac{10y}{30}=\dfrac{15z}{30}\Rightarrow\dfrac{x}{5}=\dfrac{y}{3}=\dfrac{z}{2}\)
Theo tc dãy tỉ số bằng nhau
\(\dfrac{x}{5}=\dfrac{y}{3}=\dfrac{z}{2}=\dfrac{x+y+z}{5+3+2}=\dfrac{90}{10}=9\Rightarrow x=45;y=27;z=18\)
c, tương tự b
a: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{x+y}{3+5}=\dfrac{40}{8}=5\)
Do đó: x=15; y=25
b: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{\dfrac{1}{6}}=\dfrac{y}{\dfrac{1}{10}}=\dfrac{z}{\dfrac{1}{15}}=\dfrac{x+y+z}{\dfrac{1}{6}+\dfrac{1}{10}+\dfrac{1}{15}}=\dfrac{90}{\dfrac{1}{3}}=270\)
Do đó: x=45; y=27; z=18