Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(2x=3y=5z\)\(\Rightarrow\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{6}\)
\(\Rightarrow\dfrac{x}{15}=\dfrac{3y}{30}=\dfrac{2z}{12}=\dfrac{x+3y-2z}{15+30-12}=\dfrac{66}{33}=2\)
\(\Rightarrow\left\{{}\begin{matrix}x=30\\y=20\\z=12\end{matrix}\right.\)
Đổi với chương trình lớp 7 thì chị nên thêm câu "Áp dụng tính chất dãy tỉ số bằng nhau ta có: " nhé
a,Ta có : \(2x=3y\Rightarrow\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{x}{15}=\frac{y}{10}\)
\(4y=5z\Rightarrow\frac{y}{5}=\frac{z}{4}\Rightarrow\frac{y}{10}=\frac{z}{8}\)
Suy ra :\(\frac{x}{15}=\frac{y}{10}=\frac{z}{8}=k\Rightarrow x-15k;y=10k;z=8k\)
Ta có : \(4(15k)-3(10k)+5(8k)=7\)
\(\Rightarrow60k-30k+40k=7\)
\(\Rightarrow70k=7\). Suy ra \(k=\frac{1}{10}\)
Ta có : \(x=\frac{1}{10}\cdot15=\frac{3}{2}\)
\(y=\frac{1}{10}\cdot10=1\)
Mình chỉ giải có chừng này thôi
Câu b mk làm sau
\(xy+2x-y=7\)
\(xy+2x=7+y\)
\(x\left(y+2\right)=7+y\)
\(x=\frac{7+y}{y+2}\)
GIải:
Ta có: \(2x=3y\) => \(\frac{x}{3}=\frac{y}{2}\) => \(\frac{x}{15}=\frac{y}{10}\)
\(4y=5z\) => \(\frac{y}{5}=\frac{z}{4}\) => \(\frac{y}{10}=\frac{z}{8}\)
=> \(\frac{x}{15}=\frac{y}{10}=\frac{z}{8}\)
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{15}=\frac{y}{10}=\frac{z}{8}=\frac{x+y+z}{15+10+8}=\frac{66}{33}=2\)
=> \(\hept{\begin{cases}\frac{x}{15}=2\\\frac{y}{10}=2\\\frac{z}{8}=2\end{cases}}\) => \(\hept{\begin{cases}x=2.15=30\\y=2.10=20\\z=2.8=16\end{cases}}\)
Vậy x = 30; y = 20 và z = 16
ta có : \(2x=3y\Rightarrow\frac{x}{3}=\frac{y}{2}\)
\(4y=5z\Rightarrow\frac{y}{5}=\frac{z}{4}\)
\(\Rightarrow\frac{x}{15}=\frac{y}{10}=\frac{z}{8}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có :
\(\frac{x}{15}=\frac{y}{10}=\frac{z}{8}=\frac{x+y+z}{15+10+8}=\frac{66}{33}=2\)
\(\rightarrow\frac{x}{15}=2\Rightarrow x=30\)
\(\rightarrow\frac{y}{10}=2\Rightarrow y=20\)
\(\rightarrow\frac{z}{8}=2\Rightarrow z=16\)
a) Vì \(2x=3y\Rightarrow\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{x}{21}=\frac{y}{14}\)
\(3y=7z\Rightarrow\frac{y}{7}=\frac{z}{3}\Rightarrow\frac{y}{14}=\frac{z}{6}\)
\(\Rightarrow\frac{x}{21}=\frac{y}{14}=\frac{z}{6}\) và x+y-z=58
APa dụng TC dãy TSBN ta có
\(\frac{x}{21}=\frac{y}{14}=\frac{z}{6}=\frac{x+y-z}{21+14-6}=\frac{58}{29}=2\)
\(\Rightarrow x=42;y=28;z=12\)
Các câu còn lại tương tự
\(2x=3y=5z\Rightarrow\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{6}\)
Áp dụng t/c dtsbn:
\(\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{6}=\dfrac{x+y-z}{15+10-6}=\dfrac{38}{19}=2\)
\(\Rightarrow\left\{{}\begin{matrix}x=2.15=30\\y=2.10=20\\z=2.6=12\end{matrix}\right.\)
\(2x=3y=5z\) \(\Rightarrow\dfrac{2x}{30}=\dfrac{3y}{30}=\dfrac{5z}{30}\Rightarrow\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{6}\)
Theo tính chất dãy tỉ số bằng nhau:
\(\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{6}=\dfrac{x+y-z}{15+10-6}=\dfrac{38}{19}=2\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{15}=2\\\dfrac{y}{10}=2\\\dfrac{z}{6}=2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=30\\y=20\\z=12\end{matrix}\right.\)
\(2x=3y-2x\Leftrightarrow4x=3y\Leftrightarrow\dfrac{x}{3}=\dfrac{y}{4}\\ 3y-2x=5z\Leftrightarrow4x-2x=5z\Leftrightarrow2x=5z\Leftrightarrow\dfrac{x}{5}=\dfrac{z}{2}\\ \Leftrightarrow\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{6}=\dfrac{x-y+z}{15-20+6}=\dfrac{99}{1}=99\\ \Leftrightarrow\left\{{}\begin{matrix}x=1485\\y=1980\\z=594\end{matrix}\right.\)
\(2x=3y=5z\Rightarrow\dfrac{x}{\dfrac{1}{2}}=\dfrac{y}{\dfrac{1}{3}}=\dfrac{z}{\dfrac{1}{5}}\) và \(x+y-z=-66\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{\dfrac{1}{2}}=\dfrac{y}{\dfrac{1}{3}}=\dfrac{z}{\dfrac{1}{5}}=\dfrac{x+y-z}{\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{5}}=\dfrac{-66}{\dfrac{19}{30}}=\dfrac{-1980}{19}\)
\(\dfrac{x}{\dfrac{1}{2}}=\dfrac{-1980}{19}\Rightarrow x=\dfrac{-1980}{19}.\dfrac{1}{2}=\dfrac{-990}{19}\)
\(\dfrac{y}{\dfrac{1}{3}}=\dfrac{-1980}{19}\Rightarrow y=\dfrac{-1980}{19}.\dfrac{1}{3}=\dfrac{-660}{19}\)
\(\dfrac{z}{\dfrac{1}{5}}=\dfrac{-1980}{19}\Rightarrow z=\dfrac{-1980}{19}.\dfrac{1}{5}=\dfrac{-396}{19}\)
Vậy................
bạn làm theo cách của nobita à