\(\frac{x}{2}\)\(=\frac{y}{5}\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 2 2020

                                                      Bài giải

a, Đặt \(\frac{x}{2}=\frac{y}{5}=k\text{ }\Rightarrow\text{ }\hept{\begin{cases}x=2k\\y=5k\end{cases}}\text{ }\Rightarrow\text{ }x\cdot y=2k\cdot5k=10k^2=90\text{ }\Rightarrow\text{ }k^2=9\text{ }\Rightarrow\text{ }k=\pm3\)

\(\Rightarrow\text{ }\hept{\begin{cases}x=2\cdot\left(-3\right)=-6\\y=5\cdot\left(-3\right)=-15\end{cases}}\) hoặc \(\hept{\begin{cases}x=2\cdot3=6\\y=5\cdot3=15\end{cases}}\)

Vậy \(\left(x\text{ ; }y\right)=\left(-3\text{ ; }-15\right)\text{ ; }\left(6\text{ ; }15\right)\)

b, Do \(\hept{\begin{cases}\left(x-\frac{1}{5}\right)^{2004}\ge0\\\left(y+0,4\right)^{100}\ge0\\\left(z-3\right)^{678}\ge0\end{cases}}\text{ mà }\left(x-\frac{1}{5}\right)^{2004}+\left(y+0,4\right)^{100}+\left(z-3\right)^{678}=0\)

\(\Rightarrow\hept{\begin{cases}\left(x-\frac{1}{5}\right)^{2004}\ge0\\\left(y+0,4\right)^{100}\ge0\\\left(z-3\right)^{678}\ge0\end{cases}}\Rightarrow\hept{\begin{cases}\left(x-\frac{1}{5}\right)^{2004}=0\\\left(y+0,4\right)^{100}=0\\\left(z-3\right)^{678}=0\end{cases}}\Rightarrow\hept{\begin{cases}x-\frac{1}{5}=0\\y+0,4=0\\z-3=0\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{1}{5}\\y=-0,4\\z=3\end{cases}}\)

Vậy \(x=\frac{1}{5}\text{ , }y=-0,4\text{ , }z=3\)

26 tháng 2 2020

a) ĐẶt \(\frac{x}{2}=\frac{y}{5}=k\)suy ra x=2k, y=5k

Mà x.y=90

suy ra 2k. 5k = 90 suy ra k2=9 suy ra k\(\in\){3;-3}

Với k=3 suy ra x=6, y=15

Với k = -3 suy ra x=-1; y=-15

b) Vì \(\left(x-\frac{1}{5}\right)^{2004}\ge0,\forall x\)

\(\left(y+0,4\right)^{100}\ge0,\forall y\)

\(\left(z-3\right)^{678}\ge0,\forall z\)

Suy ra \(\left(x-\frac{1}{5}\right)^{2004}\)+\(\left(y+0,4\right)^{100}\)+\(\left(z-3\right)^{678}\ge0;\forall x,y,z\)

suy ra \(\left(x-\frac{1}{5}\right)^{2004}=0\)và \(\left(y+0,4\right)^{100}=0\)và \(\left(z-3\right)^{678}=0\)

suy ra x=\(\frac{1}{5}\); y=-0,4 ; z=3

2 tháng 1 2017

A) ta có \(\frac{X}{2}=\frac{Y}{3}\)=>\(\frac{X}{8}=\frac{Y}{12}\)(1)

\(\frac{Y}{4}=\frac{Z}{5}\)=>\(\frac{Y}{12}=\frac{Z}{15}\)(2)

Từ (1)và (2)=>\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\) và x-y-z=28

đến đây tự làm

2 tháng 1 2017

c) \(\left(x-\frac{1}{5}\right)^{2004}+\left(y+0,4\right)^{100}+\left(z-3\right)^{678}=0\)

\(\Rightarrow\left(x-\frac{1}{5}\right)^{2004}=0\)\(\left(y+0,4\right)^{100}=0\)\(\left(z-3\right)^{678}=0\)

+) \(\left(x-\frac{1}{5}\right)^{2004}=0\Rightarrow x-\frac{1}{5}=0\Rightarrow x=\frac{1}{5}\)

+) \(\left(y+0,4\right)^{100}=0\Rightarrow y+0,4=0\Rightarrow y=-0,4\)

+) \(\left(z-3\right)^{678}=0\Rightarrow z-3=0\Rightarrow z=3\)

Vậy bộ số \(\left(x;y;z\right)\)\(\left(\frac{1}{5};-0,4;3\right)\)

25 tháng 9 2018

\(3x=y\)=>  \(\frac{x}{1}=\frac{y}{3}\)

hay  \(\frac{x}{4}=\frac{y}{12}\)

\(5y=4z\)=>  \(\frac{y}{4}=\frac{z}{5}\)

hay  \(\frac{y}{12}=\frac{z}{15}\)

suy ra:   \(\frac{x}{4}=\frac{y}{12}=\frac{z}{15}\)

đến đây bạn ADTCDTSBN nhé

a: \(\Leftrightarrow x\cdot\dfrac{1}{4}=\dfrac{1}{2}+\dfrac{1}{9}=\dfrac{11}{18}\)

hay \(x=\dfrac{11}{18}:\dfrac{1}{4}=\dfrac{11}{18}\cdot4=\dfrac{44}{18}=\dfrac{22}{9}\)

d: =>x+1;x-2 khác dấu

Trường hợp 1: \(\left\{{}\begin{matrix}x+1>0\\x-2< 0\end{matrix}\right.\Leftrightarrow-1< x< 2\)

Trường hợp 2: \(\left\{{}\begin{matrix}x+1< 0\\x-2>0\end{matrix}\right.\Leftrightarrow2< x< -1\left(loại\right)\)

e: =>x-2>0 hoặc x+2/3<0

=>x>2 hoặc x<-2/3

19 tháng 3 2017

Đặt \(\frac{3\left|x\right|+5}{3}=\frac{3\left|y\right|-1}{5}=\frac{3-z}{7}=k\)

\(\Rightarrow\left|x\right|=\frac{3k-5}{3}\Rightarrow2\left|x\right|=\frac{6k-10}{3}\)

\(\Rightarrow\left|y\right|=\frac{5k+1}{3}\Rightarrow7\left|y\right|=\frac{35k+7}{3}\)

\(\Rightarrow z=3-7k\Rightarrow3z=9-21k\)

Vì \(2\left|x\right|+7\left|y\right|+3z=-14\)\(\Rightarrow\frac{6k-10}{3}+\frac{35k+7}{3}+\left(9-21k\right)=-14\)

\(\Rightarrow\frac{\left(6k-10\right)+\left(35k+7\right)+\left(27-63k\right)}{3}=-14\)

\(\Rightarrow\frac{-22k+24}{3}=-14\)

\(\Rightarrow-22k+24=-42\)

\(\Rightarrow k=\frac{-42-24}{22}=3\)

\(\Rightarrow\left|x\right|=\frac{3.3-5}{3}=\frac{4}{3}\Rightarrow x=-\frac{4}{3};\frac{4}{3}\)

\(\Rightarrow\left|y\right|=\frac{5.3+1}{3}=\frac{16}{3}\Rightarrow y=-\frac{16}{3};\frac{16}{3}\)

\(\Rightarrow z=3-7.3=-18\)

26 tháng 2 2020

ĐÂY LÀ TOÁN 6:

26 tháng 2 2020

a) Ta có : \(\orbr{\begin{cases}\left(x+20\right)^{100}\ge0\\\left|y+4\right|\ge0\end{cases}}\)

=> \(\left(x+20\right)^{100}+\left|y+4\right|\ge0\)

Do đó \(\left(x+20\right)^{100}=0\)=> \(x=-20\)

\(y+4=0\Rightarrow y=-4\)

Vậy x = -20 và y = -4

b) \(\left(x-\frac{2}{5}\right)\left(x+\frac{3}{7}\right)=0\)

=> \(\orbr{\begin{cases}x-\frac{2}{5}=0\\x+\frac{3}{7}=0\end{cases}}\)

=> \(\orbr{\begin{cases}x=\frac{2}{5}\\x=-\frac{3}{7}\end{cases}}\)

19 tháng 8 2019

nhầm a, \(x^2+\left(9-\frac{1}{10}\right)^2=0\)

\(a;x^2+\left(9-\frac{1}{10}\right)^2=0\)

\(\Leftrightarrow x^2+\frac{89^2}{100}=0\)

\(\Leftrightarrow x^2=-\frac{7921}{100}\)

\(x^2\ge0\Rightarrow x\in\varnothing\)

Bài 1:

a)Ta có:

\(\frac{4}{5}\left(\frac{7}{2}+\frac{1}{4}\right)^2=\frac{4}{5}\left(\frac{15}{4}\right)^2=\frac{4}{5}.\frac{15}{4}.\frac{15}{4}=\frac{45}{4}\)

b)Ta có:

\(\frac{5^4.20^4}{25^5.4^5}=\frac{\left(5.20\right)^4}{\left(25.4\right)^5}=\frac{100^4}{100^5}=\frac{1}{100}\)

Bài 2:

Ta có:

\(\frac{x}{2}=\frac{y}{-5}=\frac{x-y}{2-\left(-5\right)}=\frac{10}{7}\)

\(\Rightarrow\left\{{}\begin{matrix}x=\frac{20}{7}\\y=\frac{-50}{7}\end{matrix}\right.\)

Bài 1: Tìm x, y, z biết: a. \(8x=3y\); \(5y=6z\) và \(2x+y-z=-34\)b. \(6^{x+1}-200\cdot6^{x-1}=360\) \(\left(x\in N,x\ge2\right)\)c. \(3^x+4^x=5^x\left(x\in N\right)\)d. \(\frac{x-5}{7}=\frac{2y+3}{5}=z+19\) và \(x+y=z\)e. \(\frac{x^3+y^3}{6}=\frac{x^3-2y^3}{4}\) và \(x^6\cdot y^6=64\)g. \(\left(x^3-5\right)\left(x^3-10\right)\left(x^3-30\right)< 0\left(x\in Z\right)\)Bài 2: a. Chứng minh...
Đọc tiếp

Bài 1: Tìm x, y, z biết: 

a. \(8x=3y\)\(5y=6z\) và \(2x+y-z=-34\)

b. \(6^{x+1}-200\cdot6^{x-1}=360\) \(\left(x\in N,x\ge2\right)\)

c. \(3^x+4^x=5^x\left(x\in N\right)\)

d. \(\frac{x-5}{7}=\frac{2y+3}{5}=z+19\) và \(x+y=z\)

e. \(\frac{x^3+y^3}{6}=\frac{x^3-2y^3}{4}\) và \(x^6\cdot y^6=64\)

g. \(\left(x^3-5\right)\left(x^3-10\right)\left(x^3-30\right)< 0\left(x\in Z\right)\)

Bài 2: 

a. Chứng minh rằng: \(1-\frac{1}{2^2}-\frac{1}{3^2}-\frac{1}{4^2}-...-\frac{1}{2011^2}>\frac{1}{2011}\)

b. Cho \(\left(5a_1+7b_1\right)^{2010}+\left(5a_2+7b_2\right)^{2012}+\left(5a_3+7b_3\right)^{2014}\le0\) và \(b_1,b_2,b_3\ne0,b_1+b_2+b_3\ne0\) . Chứng minh rằng: \(\frac{a_1+a_2+a_3}{b_1+b_2+b_3}=-1\frac{2}{5}\)

Bài 3: 

a. Cho \(\frac{x}{y}=\frac{z}{t}\) . Chứng minh rằng \(\frac{x^2-y^2}{z^2-t^2}=\left(\frac{y-x}{t-z}\right)^2=\frac{xy}{zt}\)

b. Độ dài 3 đường cao của 1 tam giác tỉ lệ với 3; 5; 6. Tính độ dài 3 cạnh tương ứng của tam giác đó, biết rằng chu vi của tam giác là  42cm 

c. Chứng minh rằng \(2^{x+4}-3^x-3^{x+2}-2^x\) chia hết cho 30 với x la số tựu nhiên lớn hơn hoặc bằng 1

 

0
31 tháng 8 2017

Ta có : \(\frac{x+1}{x-4}>0\) 

Thì sảy ra 2 trường hợp 

Th1 : x + 1 > 0 và x - 4 > 0 => x > -1 ; x > 4 

Vậy x > 4 

Th2 : x + 1 < 0 và x - 4 < 0 => x < -1 ; x < 4 

Vậy x < (-1) . 

31 tháng 8 2017

Ta có : \(\left(x+2\right)\left(x-3\right)< 0\)

Th1 : \(\hept{\begin{cases}x+2< 0\\x-3>0\end{cases}\Rightarrow\hept{\begin{cases}x< -2\\x>3\end{cases}}\left(\text{Vô lý }\right)}\)

Th2 : \(\hept{\begin{cases}x+2>0\\x-3< 0\end{cases}\Rightarrow\hept{\begin{cases}x>-2\\x< 3\end{cases}\Rightarrow}-2< x< 3}\)