Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
b) Ta có đường thẳng đi qua điểm H(0;-5) nên phương trình đường thẳng đi qua H là:
\(y=0x-5\Rightarrow y=-5\)
Phương trình hoành độ giao điểm của đường thẳng \(y=-5\) và \(y=-x\) là:
\(-5=-x\)
\(\Rightarrow x=5\)
Tọa độ điểm A là (5;-5)
Phương trình hoành độ giao điểm của đường thẳng \(y=-5\) và \(y=-\dfrac{1}{2}x\) là:
\(-5=-\dfrac{1}{2}x\)
\(\Rightarrow\dfrac{1}{2}x=5\)
\(\Rightarrow x=5:\dfrac{1}{2}\)
\(\Rightarrow x=10\)
Tọa độ điểm B là (10;-5)
c) Ta có: A(5;-5) và B(10;-5)
Độ dài đường thẳng AB là \(10-5=5\left(đvđd\right)\)
Có A(5;-5) ⇒ HA = 5 (đvđd)
Xét tam giác OHA vuông tại H áp dụng định lý Py-ta-go ta có:
\(OA^2=HA^2+OH^2\) (tọa độ điểm H(0;-5) nên OH = 5 đvđd)
\(\Rightarrow OA=\sqrt{5^2+5^2}=\sqrt{50}=5\sqrt{2}\left(đvđd\right)\)
Có B(10;-5) ⇒ HB = 10 (đvđd)
Xét tam giác OHB vuông tại H áp dụng định lý Py-ta-go ta có:
\(OB^2=HB^2+OH^2\)
\(\Rightarrow OB=\sqrt{10^2+5^2}=\sqrt{125}=5\sqrt{5}\left(đvđd\right)\)
Chu vi: \(C_{OAB}=AB+OA+OB=5+5\sqrt{2}+5\sqrt{5}\approx23,25\left(đvđd\right)\)
Diện tích: \(S_{OAB}=\dfrac{1}{2}\cdot OH\cdot AB=\dfrac{1}{2}\cdot5\cdot5=12,5\left(đvdt\right)\)
bài 1 : thay \(x=3;y=-1\) vào hàm số \(y=ax+5\)
ta có : \(y=ax+5\Leftrightarrow-1=a.3+5\Leftrightarrow3a=-6\Leftrightarrow a=\dfrac{-6}{3}=-2\)
bài 2 : a) hàm số \(y=-x+2\) nghịch biến ; hệ số \(\left\{{}\begin{matrix}a=-1< 0\\b=2\end{matrix}\right.\)
b) hàm số \(y=-5+7x\) đồng biến ; hệ số \(\left\{{}\begin{matrix}a=7>0\\b=-5\end{matrix}\right.\)
c) hàm số \(y=-3x\) nghịch biến ; hệ số \(\left\{{}\begin{matrix}a=-3< 0\\b=0\end{matrix}\right.\)
d) hàm số \(y=\sqrt{1-\sqrt{2}}\left(x+1\right)\Leftrightarrow y=\sqrt{1-\sqrt{2}}x+\sqrt{1-\sqrt{2}}\) đồng biến
hệ số \(\left\{{}\begin{matrix}a=\sqrt{1-\sqrt{2}}>0\\b=\sqrt{1-\sqrt{2}}\end{matrix}\right.\)
Vừa mới học xong :
Bài 2 :
a ) \(y=-x+2=2-x\)
Để hàm số đồng biến thì : \(2-x>0\Rightarrow x< 2\)
Để hàm số nghịch biến thì : \(2-x< 0\Rightarrow x>2\)
b ) \(y=-5+7x=7x-5\)
Để hàm số đồng biến thì : \(7x-5>0\Rightarrow x>\dfrac{5}{7}\)
Để hàm số nghịch biến thì : \(7x-5< 0\Rightarrow x< \dfrac{5}{7}\)
Các câu sau tương tự
Câu 1:
A,B,C là hàm số bậc nhất, còn D không phải
Câu 2:
a: Đường thẳng c và d cắt y=-3x+2
b: Đường thẳng song song y=-3x+2 là y=-3x+2, y=-3x+4
Ta có: BC = BH + HC = y + 32
Áp dụng hệ thức lượng A B 2 = B H . B C trong tam giác vuông ABC ta có:
⇔ y − 18 = 0 y + 50 = 0 ⇔ y = 18 N y = − 50 L
Suy ra y = 18 => BC = 18 + 32 = 50
Áp dụng hệ thức lượng A C 2 = C H . B C ta có:
Vậy c = 40; y = 18
Đáp án cần chọn là: D
Áp dụng hệ thức giữa cạnh và đường cao trong tam giác vuông ta có:
A B 2 = B H . B C ⇔ B H = A B 2 B C = 144 20 = 7 , 2 => CH = BC – BH = 20 – 7,2 = 12,8
Vậy x = 7,2; y = 12,8
Đáp án cần chọn là: C
Áp dụng hệ thức giữa cạnh và đường cao trong tam giác vuông ta có:
A B 2 = B H . B C ⇔ B H = A B 2 B C = 100 16 = 6 , 25 => CH = BC – BH = 16 – 6,25 = 9,75
Vậy x = 6,25; y = 9,75
Đáp án cần chọn là: B
Bài 3:
b: \(tan\left(a_1\right)=-2\)
nên \(a_1\simeq117^0\)
\(tan\left(a_2\right)=-1\)
nên a2=135 độ
\(tan\left(a3\right)=-0,5\)
nên a3=153 độ
Bài 2:
b: \(tan\left(a1\right)=0,5\)
nên a1=27 độ
\(tan\left(a2\right)=1\)
nên a2=45 độ
\(tan\left(a3\right)=2\)
nên a3=64 độ
a, Thay x = 1 vào (d) : y = 2x <=> y = 2
Vậy (d) đi qua A(1;2)
(P) cắt (d) tại A(1;2) <=> a = 2
c, Hoành độ giao điểm (P) ; (d) tm pt
\(2x^2-2x=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=0\end{matrix}\right.\)
-> Thay x = 0 vào ta được y = 0
Vậy (P) cắt điểm thứ 2 là B(0;0)
tam giác ABC vuông tại A có AT là đường cao
Áp dụng định lí Py ta go ta có : \(AB^2+AC^2=BC^2\Rightarrow25-AB^2=AC^2\)(1)
* Theo hệ thức : \(\frac{1}{AB^2}+\frac{1}{AC^2}=\frac{1}{AT^2}\Rightarrow\frac{1}{4}=\frac{1}{AB^2}+\frac{1}{25-AB^2}\)( theo 1 )
\(\Rightarrow AB=2\sqrt{5};\sqrt{5}\)
TH1 : \(25-\left(2\sqrt{5}\right)^2=AC\Rightarrow AC=\sqrt{5}\)
TH2 : \(25-\left(\sqrt{5}\right)^2=AC\Rightarrow AC=2\sqrt{5}\)
Gọi BH là z ( z>0), thì HC là 5-z
ΔABC vuông tại A có:
AH.BC=BH.HC (định lý 3)
⇔ 22 = z(5-z)
⇔ z2 - 5z + 4 = 0
⇔ z(z-1) - 4(z-1) = 0
⇔(z-4)(z-1)=0
⇔\(\left[{}\begin{matrix}z-4=0\\z-1=0\end{matrix}\right.\)
⇔\(\left[{}\begin{matrix}z=4\left(nhận\right)\\z=1\left(nhận\right)\end{matrix}\right.\)
TH1:Nếu z=4
ΔABC vuông tại A có:
x2=BC.BH ( định lý 1)
⇔ x2= 5.4
⇔ x2= 20
⇒x=\(2\sqrt{5}\)
ta có: y2= BC.HC ( định lý 1)
Chứng minh tương tự như trên ta được
y= \(\sqrt{5}\)
TH2: Nếu z=1
Chứng minh tương tự như TH1 ta được:
x=\(\sqrt{5}\)
y= \(2\sqrt{5}\)