\(x^6-2x^3y-x^4+y^2+7=0\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 7 2018

a/ +) \(\dfrac{x}{3}=\dfrac{y}{4}\Leftrightarrow\dfrac{x}{9}=\dfrac{y}{12}\)\(\left(1\right)\)

+) \(\dfrac{y}{3}=\dfrac{z}{5}\Leftrightarrow\dfrac{y}{12}=\dfrac{z}{20}\left(2\right)\)

Từ \(\left(1\right)+\left(2\right)\Leftrightarrow\dfrac{x}{9}=\dfrac{y}{12}=\dfrac{z}{20}\)

\(\Leftrightarrow\dfrac{2x}{18}=\dfrac{3y}{36}=\dfrac{z}{20}\)

Theo t/c dãy tỉ số bằng nhau ta có :

\(\dfrac{2x}{18}=\dfrac{3y}{36}=\dfrac{z}{20}=\dfrac{2x-3y+z}{18-36+20}=\dfrac{6}{2}=3\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{9}=3\\\dfrac{y}{12}=3\\\dfrac{z}{20}=3\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=27\\y=36\\z=60\end{matrix}\right.\)

Vậy ..

b/ \(2x=3y=5z\)

\(\Leftrightarrow\dfrac{2x}{30}=\dfrac{3y}{30}=\dfrac{5z}{30}\)

\(\Leftrightarrow\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{6}\)

Theo t/c dãy tỉ số bằng nhau tcos :

\(\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{6}=\dfrac{x+y-z}{15+10-6}=\dfrac{95}{19}=5\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{15}=5\\\dfrac{y}{10}=5\\\dfrac{z}{6}=5\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=75\\y=50\\z=30\end{matrix}\right.\)

Vậy..

c/ tương tự

3 tháng 7 2018

bạn có thể giải cho mik phần c đc ko

AH
Akai Haruma
Giáo viên
24 tháng 11 2018

a)

\(\frac{x^2-16}{4x-x^2}=\frac{x^2-4^2}{x(4-x)}=\frac{(x-4)(x+4)}{x(4-x)}=\frac{x+4}{-x}\)

b) \(\frac{x^2+4x+3}{2x+6}=\frac{x^2+x+3x+3}{2(x+3)}=\frac{x(x+1)+3(x+1)}{2(x+3)}=\frac{(x+1)(x+3)}{2(x+3)}=\frac{x+1}{2}\)

c)

\(\frac{15x(x+y)^3}{5y(x+y)^2}=\frac{5.3.x(x+y)^2.(x+y)}{5y(x+y)^2}=\frac{3x(x+y)}{y}\)

d) \(\frac{5(x-y)-3(y-x)}{10(x-y)}=\frac{5(x-y)+3(x-y)}{10(x-y)}=\frac{8(x-y)}{10(x-y)}=\frac{8}{10}=\frac{4}{5}\)

AH
Akai Haruma
Giáo viên
24 tháng 11 2018

e) \(\frac{2x+2y+5x+5y}{2x+2y-5x-5y}=\frac{7x+7y}{-3x-3y}=\frac{7(x+y)}{-3(x+y)}=\frac{-7}{3}\)

f) \(\frac{x^2-xy}{3xy-3y^2}=\frac{x(x-y)}{3y(x-y)}=\frac{x}{3y}\)

g) \(\frac{2ax^2-4ax+2a}{5b-5bx^2}=\frac{2a(x^2-2x+1)}{5b(1-x^2)}=\frac{2a(x-1)^2}{5b(1-x)(1+x)}\)

\(=\frac{2a(x-1)}{5b(-1)(x+1)}=\frac{2a(1-x)}{5b(x+1)}\)

19 tháng 11 2017

đề

19 tháng 11 2017

Tìm x,y,z biết

10, \(5x^3+11y^3=-13z^3\)

\(\Rightarrow5x^3+11y^3⋮13\)

\(\Rightarrow x,y⋮13\)

\(\Rightarrow z⋮13\)

Đến đây dùng lùi vô hạn nhé

6 tháng 2 2020

4. Nếu em đã tìm hiểu về giai thừa thì ở bài 4, chúng ta có thêm điều kiện: x, y, z là số tự nhiên và x,y < z

+) TH1: x = 0; y = 0 => z = 2 (tm)

+) TH2: x = 0; y = 1=> z = 2(tm)

+) Th3: x= 1; y = 0 => z = 2(tm)

+) TH4: x = 1; y= 1 => z = 2 (tm)

+) TH5: y > 1 

với \(x\le y\)

Khi đó: x! = 1.2.3...x; 

            y! = 1.2.3...x.(x+1)...y

            z! = 1.2.3....x.(x+1)...y(y+1)...z

Từ (4) <=> 1 + (x+1).(x+2)...y = (x + 1)....y(y+1)...z

<=> ( x+1)(x+2)...y[(y+1)...z - 1 ] = 1

<=> \(\hept{\begin{cases}\left(x+1\right)\left(x+2\right)...y=1\\\left(y+1\right)...z-1=1\end{cases}}\)vô lí vì y > 1

Với \(y\le x\)cũng làm tương tự và loại'

Vậy:...

22 tháng 2 2020

\(3x^2+3y^2+4xy+2x-2y+2=0\)

\(\Leftrightarrow\left(2x^2+2y^2+4xy\right)+\left(x^2+2x+1\right)+\left(y^2-2y+1\right)=0\)

\(\Leftrightarrow2\left(x^2+y^2+2xy\right)+\left(x+1\right)^2+\left(y-1\right)^2=0\)

\(\Leftrightarrow2\left(x+y\right)^2+\left(x+1\right)^2+\left(y-1\right)^2=0\)

Vì \(\left(x+y\right)^2\ge0\)\(\left(x+1\right)^2\ge0\)\(\left(y-1\right)^2\ge0\)\(\forall x,y\)

\(\Rightarrow2\left(x+y\right)^2+\left(x+1\right)^2+\left(y-1\right)^2\ge0\)

Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}x+y=0\\x+1=0\\y-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-y\\x=-1\\y=1\end{cases}}\)

Vậy \(x=-1\)và \(y=1\)